1 resultado para rights-based policy
em Universitat de Girona, Spain
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (34)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (9)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (1)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (10)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (34)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Cornell: DigitalCommons@ILR (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (5)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (46)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (175)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (295)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Université de Montréal (1)
- Université de Montréal, Canada (7)
- University of Connecticut - USA (1)
- University of Michigan (21)
- University of Queensland eSpace - Australia (10)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV