4 resultados para real world context
em Universitat de Girona, Spain
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
El retorno a la vida cotidiana para una persona con lesión medular después del periodo de rehabilitación en régimen hospitalario, es un proceso difícil no exento de dificultades y nuevos retos personales. En este trabajo nos planteamos identificar aquellos factores más relevantes que contribuyen a mejorar su calidad de vida, desde la perspectiva de las propias personas afectadas. Hemos realizado dos grupos de discusión: uno formado por 12 personas con paraplejia y otro formado por 6 personas con tetraplejia. El análisis de contenido realizado indica que, para los participantes existen dos dimensiones relacionadas con su percepción de calidad de vida una vez salen del centro de rehabilitación: a) necesidad de atención al entorno más próximo y b) preparación para el mundo real. Concluimos señalando la importancia de realizar programas de rehabilitación integral, que incluyan, rehabilitación física, aprendizaje de habilidades que posibiliten el máximo de independencia y autonomía personal y trabajo de apoyo a la familia
Resumo:
El objetivo de esta tesis es mejorar la efectividad y eficiencia de los entornos de aprendizaje virtual. Para lograr este propósito se define un Modelo de Usuario que considera las características del usuario, el contexto y la Interacción. Estas tres dimensiones son integradas en un Modelo de Usuario Integral (MUI) para proveer adaptación de contenido, formato y actividades en entornos educativos con heterogeneidad de usuarios, tecnologías e interacciones. Esta heterogeneidad genera la entrega de contenidos, formatos y actividades inadecuadas para los estudiantes. La particularización del MUI en un entorno educativo es definida Modelo de Estudiante Integral (MEI). Las principales aportaciones de esta tesis son la definición y validación de un MUI, la utilización de un MEI abierto para propiciar la reflexión de los estudiantes sobre sus procesos de aprendizaje, la integración tecnológica con independencia de plataforma y la validación del MEI con estudiantes en escenarios reales.
Resumo:
La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.