4 resultados para probabilistic refinement calculus
em Universitat de Girona, Spain
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to go on or to stop sampling a signal. When the sampled values are homogeneous enough, we assume that they represent the signal fairly well and we do not need further refinement, otherwise more samples are required, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is very sensitive to variability is necessary. In this paper, we present a family of discrimination measures, the f-divergences, meeting this requirement. These convex functions have been well studied and successfully applied to image processing and several areas of engineering. Two applications to global illumination are shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. We obtain significantly better results than with classic criteria, showing that f-divergences are worth further investigation in computer graphics. Also a discrimination measure based on entropy of the samples for refinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a natural method to deal with the adaptive subdivision of the sampling region
Resumo:
This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
The paper discusses maintenance challenges of organisations with a huge number of devices and proposes the use of probabilistic models to assist monitoring and maintenance planning. The proposal assumes connectivity of instruments to report relevant features for monitoring. Also, the existence of enough historical registers with diagnosed breakdowns is required to make probabilistic models reliable and useful for predictive maintenance strategies based on them. Regular Markov models based on estimated failure and repair rates are proposed to calculate the availability of the instruments and Dynamic Bayesian Networks are proposed to model cause-effect relationships to trigger predictive maintenance services based on the influence between observed features and previously documented diagnostics