1 resultado para polluter pays principle
em Universitat de Girona, Spain
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (166)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Argos - Repositorio Institucional de la Secretaría de Investigación y Postgrado de la Facultad de Humanidades y Ciencias Sociales de la Universidad Nacional de Misiones (2)
- Biblioteca Digital da Câmara dos Deputados (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital Loyola - Universidad de Deusto (8)
- Bibloteca do Senado Federal do Brasil (1)
- Biodiversity Heritage Library, United States (18)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (22)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (66)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Howard @ Howard University | Howard University Research (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (8)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (275)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (16)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (6)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (44)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (40)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (122)
Resumo:
In any discipline, where uncertainty and variability are present, it is important to have principles which are accepted as inviolate and which should therefore drive statistical modelling, statistical analysis of data and any inferences from such an analysis. Despite the fact that two such principles have existed over the last two decades and from these a sensible, meaningful methodology has been developed for the statistical analysis of compositional data, the application of inappropriate and/or meaningless methods persists in many areas of application. This paper identifies at least ten common fallacies and confusions in compositional data analysis with illustrative examples and provides readers with necessary, and hopefully sufficient, arguments to persuade the culprits why and how they should amend their ways