2 resultados para planar antenna
em Universitat de Girona, Spain
Resumo:
Projective homography sits at the heart of many problems in image registration. In addition to many methods for estimating the homography parameters (R.I. Hartley and A. Zisserman, 2000), analytical expressions to assess the accuracy of the transformation parameters have been proposed (A. Criminisi et al., 1999). We show that these expressions provide less accurate bounds than those based on the earlier results of Weng et al. (1989). The discrepancy becomes more critical in applications involving the integration of frame-to-frame homographies and their uncertainties, as in the reconstruction of terrain mosaics and the camera trajectory from flyover imagery. We demonstrate these issues through selected examples
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach