5 resultados para physical learning environments
em Universitat de Girona, Spain
Resumo:
Learning contents adaptation has been a subject of interest in the research area of the adaptive hypermedia systems. Defining which variables and which standards can be considered to model adaptive content delivery processes is one of the main challenges in pedagogical design over e-learning environments. In this paper some specifications, architectures and technologies that can be used in contents adaptation processes considering characteristics of the context are described and a proposal to integrate some of these characteristics in the design of units of learning using adaptation conditions in a structure of IMS-Learning Design (IMS-LD) is presented. The key contribution of this work is the generation of instructional designs considering the context, which can be used in Learning Management Systems (LMSs) and diverse mobile devices
Resumo:
As universities are offering tuition through online learning environments, “onsite students” in higher education are increasingly becoming “online learners”. Since the medium for learning (and teaching) online is a digital environment, and at a distance, the role taken by students and teaching staff is different to the one these are used to in onsite, traditional settings. Therefore the Role of the Online Learner, presented in this paper, is key to onsite students who are to become online learners. This role consists of five competences: Operational, Cognitive, Collaborative, Self-directing, Course-specific. These five competences integrate the various skills, strategies, attitudes and awareness that make up the role of online learner, which learners use to perform efficiently online. They also make up the basis of a tutorial for would-be online learners, going over the Role of the Online Learner by means of concepts, examples and reflective activities. This tutorial, available to students in the author’s website, is also helpful to teaching and counselling staff in guiding their students to become online learners
Resumo:
El objetivo de esta tesis es mejorar la efectividad y eficiencia de los entornos de aprendizaje virtual. Para lograr este propósito se define un Modelo de Usuario que considera las características del usuario, el contexto y la Interacción. Estas tres dimensiones son integradas en un Modelo de Usuario Integral (MUI) para proveer adaptación de contenido, formato y actividades en entornos educativos con heterogeneidad de usuarios, tecnologías e interacciones. Esta heterogeneidad genera la entrega de contenidos, formatos y actividades inadecuadas para los estudiantes. La particularización del MUI en un entorno educativo es definida Modelo de Estudiante Integral (MEI). Las principales aportaciones de esta tesis son la definición y validación de un MUI, la utilización de un MEI abierto para propiciar la reflexión de los estudiantes sobre sus procesos de aprendizaje, la integración tecnológica con independencia de plataforma y la validación del MEI con estudiantes en escenarios reales.
Resumo:
In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems