3 resultados para parametric implicit vector equilibrium problems

em Universitat de Girona, Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. En aquest volum es generalitza en primer lloc el concepte d'aplicació entre dos espais vectorials i s'introdueix la important definició d'aplicació lineal. Pel seu estudi s'utilitza l'àlgebra matricial. A continuació es desenvolupen els temes de valors i vectors propis, la diagonalització d'endomorfismes i l'estudi de les formes quadràtiques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oferim als estudiants universitaris i als lectors interessats aquesta guia didàctica de la matemàtica universitària com a fruit dels nostres anys de docència de les matemàtiques a la Universitat. El resultat final ha esdevingut una col·lecció de setze petits volums agrupats en els dos mòduls d'Àlgebra Lineal i de Càlcul Infinitesimal. Amb aquest sisè volum de la col•lecció iniciem l’estudi de l’Àlgebra vectorial a partir de conceptes propers a la intuïció com són els vectors del pla i de l’espai per, a continuació, fer una generalització del concepte de vector a altres ens matemàtics com polinomis, successions, magnituds econòmiques, etc. En aquest volum utilitzarem sovint la notació matricial, ja coneguda i emprada en volums anteriors, i que esdevé una eina idònia per facilitar la notació dels conceptes i del càlcul entre vectors. Seguim amb l’estudi axiomàtic de l’estructura d’espai vectorial i les seves propietats, que com veurem en el proper volum ens permetrà, entre altres aplicacions a l’economia, deduir els valors i vectors propis d’un endomorfisme i diagonalitzar formes quadràtiques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las superfícies implícitas son útiles en muchas áreasde los gráficos por ordenador. Una de sus principales ventajas es que pueden ser fácilmente usadas como primitivas para modelado. Aun asi, no son muy usadas porque su visualización toma bastante tiempo. Cuando se necesita una visualización precisa, la mejor opción es usar trazado de rayos. Sin embargo, pequeñas partes de las superficies desaparecen durante la visualización. Esto ocurre por la truncación que se presenta en la representación en punto flotante de los ordenadores; algunos bits se puerden durante las operaciones matemáticas en los algoritmos de intersección. En este tesis se presentan algoritmos para solucionar esos problemas. La investigación se basa en el uso del Análisis Intervalar Modal el cual incluye herramientas para resolver problemas con incertidumbe cuantificada. En esta tesis se proporcionan los fundamentos matemáticos necesarios para el desarrollo de estos algoritmos.