3 resultados para packet filter

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

TCP flows from applications such as the web or ftp are well supported by a Guaranteed Minimum Throughput Service (GMTS), which provides a minimum network throughput to the flow and, if possible, an extra throughput. We propose a scheme for a GMTS using Admission Control (AC) that is able to provide different minimum throughput to different users and that is suitable for "standard" TCP flows. Moreover, we consider a multidomain scenario where the scheme is used in one of the domains, and we propose some mechanisms for the interconnection with neighbor domains. The whole scheme uses a small set of packet classes in a core-stateless network where each class has a different discarding priority in queues assigned to it. The AC method involves only edge nodes and uses a special probing packet flow (marked as the highest discarding priority class) that is sent continuously from ingress to egress through a path. The available throughput in the path is obtained at the egress using measurements of flow aggregates, and then it is sent back to the ingress. At the ingress each flow is detected using an implicit way and then it is admission controlled. If it is accepted, it receives the GMTS and its packets are marked as the lowest discarding priority classes; otherwise, it receives a best-effort service. The scheme is evaluated through simulation in a simple "bottleneck" topology using different traffic loads consisting of "standard" TCP flows that carry files of varying sizes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more