5 resultados para optimal control design
em Universitat de Girona, Spain
Resumo:
Esta tesis está enfocada al diseño y validación de controladores robustos que pueden reducir de una manera efectiva las vibraciones structurales producidas por perturbaciones externas tales como terremotos, fuertes vientos o cargas pesadas. Los controladores están diseñados basados en teorías de control tradicionalamente usadas en esta area: Teoría de estabilidad de Lyapunov, control en modo deslizante y control clipped-optimal, una técnica reciente mente introducida : Control Backstepping y una que no había sido usada antes: Quantitative Feedback Theory. La principal contribución al usar las anteriores técnicas, es la solución de problemas de control estructural abiertos tales como dinámicas de actuador, perturbaciones desconocidas, parametros inciertos y acoplamientos dinámicos. Se utilizan estructuras típicas para validar numéricamente los controladores propuestos. Especificamente las estructuras son un edificio de base aislada, una plataforma estructural puente-camión y un puente de 2 tramos, cuya configuración de control es tal que uno o mas problemas abiertos están presentes. Se utilizan tres prototipos experimentales para implementar los controladores robustos propuestos, con el fin de validar experimentalmente su efectividad y viabilidad. El principal resultado obtenido con la presente tesis es el diseño e implementación de controladores estructurales robustos que resultan efectivos para resolver problemas abiertos en control estructural tales como dinámicas de actuador, parámetros inciertos, acoplamientos dinámicos, limitación de medidas y perturbaciones desconocidas.
Resumo:
This paper deals with the problem of stabilizing a class of structures subject to an uncertain excitation due to the temporary coupling of the main system with another uncertain dynamical subsystem. A Lyapunov function based control scheme is proposed to attenuate the structural vibration. In the control design, the actuator dynamics is taken into account. The control scheme is implemented by using only feedback information of the main system. The effectiveness of the control scheme is shown for a bridge platform with crossing vehicle
Resumo:
This short paper addresses the problem of designing a QFT (quantitative feedback theory) based controllers for the vibration reduction in a 6-story building structure equipped with shear-mode magnetorheological dampers. A new methodology is proposed for characterizing the nonlinear hysteretic behavior of the MR damper through the uncertainty template in the Nichols chart. The design procedure for QFT control design is briefly presented
Resumo:
Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments