3 resultados para multilayered objects
em Universitat de Girona, Spain
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
This paper introduces how artificial intelligence technologies can be integrated into a known computer aided control system design (CACSD) framework, Matlab/Simulink, using an object oriented approach. The aim is to build a framework to aid supervisory systems analysis, design and implementation. The idea is to take advantage of an existing CACSD framework, Matlab/Simulink, so that engineers can proceed: first to design a control system, and then to design a straightforward supervisory system of the control system in the same framework. Thus, expert systems and qualitative reasoning tools are incorporated into this popular CACSD framework to develop a computer aided supervisory system design (CASSD) framework. Object-variables an introduced into Matlab/Simulink for sharing information between tools