4 resultados para multi-objective genetic algorithms
em Universitat de Girona, Spain
Resumo:
Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.
Resumo:
La creciente preocupación y concienciación de la sociedad respecto el medio ambiente, y en consecuencia la legislación y regulaciones generadas inducen a la modificación de los procesos productivos existentes en la industria química. Las configuraciones iniciales deben modificarse para conseguir una mayor integración de procesos. Para este fin se han creado y desarrollado diferentes metodologías que deben facilitar la tarea a los responsables del rediseño. El desarrollo de una metodología y herramientas complementarias es el principal objetivo de la investigación aquí presentada, especialmente centrada en el desarrollo y la aplicación de una metodología de optimización de procesos. Esta metodología de optimización se aplica sobre configuraciones de proceso existentes y pretende encontrar nuevas configuraciones viables según los objetivos de optimización fijados. La metodología tiene dos partes diferenciadas: la primera se basa en un simulador de procesos comercial y la segunda es la técnica de optimización propiamente dicha. La metodología se inicia con la elaboración de una simulación convenientemente validada que reproduzca el proceso existente, en este caso una papelera no integrada que produce papel estucado de calidad, para impresión. A continuación la técnica de optimización realiza una búsqueda dentro del dominio de los posibles resultados, en busca de los mejores resultados que satisfazcan plenamente los objetivos planteados. Dicha técnica de optimización está basada en los algoritmos genéticos como herramienta de búsqueda, junto a un subprograma basado en técnicas de programación matemática para el cálculo de resultados. Un número reducido de resultados son finalmente escogidos y utilizados para modificar la simulación existente fijando la redistribución de los flujos del proceso. Los resultados de la simulación del proceso determinan en último caso la viabilidad técnica de cada reconfiguración planteada. En el proceso de optimización, los objetivos están definidos en una función objetivo dentro de la técnica de optimización. Dicha función rige la búsqueda de resultados. La función objetivo puede ser individual o una combinación de objetivos. En el presente caso, la función persigue una minimización del consumo de agua y una minimización de la pérdida de materia prima. La optimización se realiza bajo restricciones para alcanzar este objetivo combinado en forma de una solución de compromiso. Producto de la aplicación de esta metodología se han obtenido resultados interesantes que significan una mejora del cierre de circuitos y un ahorro de materia prima, sin comprometer al mismo tiempo la operabilidad del proceso producto ni la calidad del papel.
Resumo:
En les xarxes IP/MPLS sobre WDM on es transporta gran quantitat d'informacio, la capacitat de garantir que el trafic arriba al node de desti ha esdevingut un problema important, ja que la fallada d'un element de la xarxa pot resultar en una gran quantitat d'informacio perduda. Per garantir que el trafic afectat per una fallada arribi al node desti, s'han definit nous algoritmes d'encaminament que incorporen el coneixement de la proteccio en els dues capes: l'optica (WDM) i la basada en paquets (IP/MPLS). D'aquesta manera s'evita reservar recursos per protegir el trafic a les dues capes. Els nous algoritmes resulten en millor us dels recursos de la xarxa, ofereixen rapid temps de recuperacio, eviten la duplicacio de recursos i disminueixen el numero de conversions del trafic de senyal optica a electrica.
Resumo:
In previous work we proposed a multi-objective traffic engineering scheme (MHDB-S model) using different distribution trees to multicast several flows. In this paper, we propose a heuristic algorithm to create multiple point-to-multipoint (p2mp) LSPs based on the optimum sub-flow values obtained with our MHDB-S model. Moreover, a general problem for supporting multicasting in MPLS networks is the lack of labels. To reduce the number of labels used, a label space reduction algorithm solution is also considered