19 resultados para molecular properties
em Universitat de Girona, Spain
Resumo:
The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field-dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6-311 + G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively
Resumo:
El coneixement de la superfície d'energia potencial (PES) ha estat essencial en el món de la química teòrica per tal de discutir tant la reactivitat química com l'estructura i l'espectroscòpia molecular. En el camp de la reactivitat química es hem proposat continuar amb el desenvolupament de nova metodologia dins el marc de la teoria del funcional de la densitat conceptual. En particular aquesta tesis es centrarà en els següents punts: a) El nombre i la naturalesa dels seus punts estacionaris del PES poden sofrir canvis radicals modificant el nivell de càlcul utilitzats, de tal manera que per estar segurs de la seva naturalesa cal anar a nivells de càlcul molt elevats. La duresa és una mesura de la resistència d'un sistema químic a canviar la seva configuració electrònica, i segons el principi de màxima duresa on hi hagi un mínim o un màxim d'energia trobarem un màxim o un mínim de duresa, respectivament. A l'escollir tot un conjunt de reaccions problemàtiques des del punt de vista de presència de punts estacionaris erronis, hem observat que els perfils de duresa són més independents de la base i del mètode utilitzats, a més a més sempre presenten el perfil correcte. b) Hem desenvolupat noves expressions basades en les integracions dels kernels de duresa per tal de determinar la duresa global d'una molècula de manera més precisa que la utilitzada habitualment que està basada en el càlcul numèric de la derivada segona de l'energia respecte al número d'electrons. c) Hem estudiat la validesa del principis de màxima duresa i de mínima polaritzabiliat en les vibracions asimètriques en sistemes aromàtics. Hem trobat que per aquests sistemes alguns modes vibracionals incompleixen aquests principis i hem analitzat la relació d'aquest l'incompliment amb l'efecte de l'acoblament pseudo-Jahn-Teller. A més a més, hem postulat tot un conjunt de regles molt senzilles que ens permetien deduir si una molècula compliria o no aquests principis sense la realització de cap càlcul previ. Tota aquesta informació ha estat essencial per poder determinar exactament quines són les causes del compliment o l'incompliment del MHP i MPP. d) Finalment, hem realitzat una expansió de l'energia funcional en termes del nombre d'electrons i de les coordenades normals dintre del conjunt canònic. En la comparació d'aquesta expansió amb l'expansió de l'energia del nombre d'electrons i del potencial extern hem pogut recuperar d'una altra forma diferent tot un conjunt de relacions ja conegudes entre alguns coneguts descriptors de reactivitat del funcional de la densitat i en poden establir tot un conjunt de noves relacions i de nous descriptors. Dins del marc de les propietats moleculars es proposa generalitzar i millorar la metodologia pel càlcul de la contribució vibracional (Pvib) a les propietats òptiques no lineals (NLO). Tot i que la Pvib no s'ha tingut en compte en la majoria dels estudis teòrics publicats de les propietats NLO, recentment s'ha comprovat que la Pvib de diversos polímers orgànics amb altes propietats òptiques no lineals és fins i tot més gran que la contribució electrònica. Per tant, tenir en compte la Pvib és essencial en el disseny dels nous materials òptics no lineals utilitzats en el camp de la informàtica, les telecomunicacions i la tecnologia làser. Les principals línies d'aquesta tesis sobre aquest tema són: a) Hem calculat per primera vegada els termes d'alt ordre de Pvib de diversos polímers orgànics amb l'objectiu d'avaluar la seva importància i la convergència de les sèries de Taylor que defineixen aquestes contribucions vibracionals. b) Hem avaluat les contribucions electròniques i vibracionals per una sèrie de molècules orgàniques representatives utilitzant diferents metodologies, per tal de poder de determinar quina és la manera més senzilla per poder calcular les propietats NLO amb una precisió semiquantitativa.
Resumo:
This thesis deals with the so-called Basis Set Superposition Error (BSSE) from both a methodological and a practical point of view. The purpose of the present thesis is twofold: (a) to contribute step ahead in the correct characterization of weakly bound complexes and, (b) to shed light the understanding of the actual implications of the basis set extension effects in the ab intio calculations and contribute to the BSSE debate. The existing BSSE-correction procedures are deeply analyzed, compared, validated and, if necessary, improved. A new interpretation of the counterpoise (CP) method is used in order to define counterpoise-corrected descriptions of the molecular complexes. This novel point of view allows for a study of the BSSE-effects not only in the interaction energy but also on the potential energy surface and, in general, in any property derived from the molecular energy and its derivatives A program has been developed for the calculation of CP-corrected geometry optimizations and vibrational frequencies, also using several counterpoise schemes for the case of molecular clusters. The method has also been implemented in Gaussian98 revA10 package. The Chemical Hamiltonian Approach (CHA) methodology has been also implemented at the RHF and UHF levels of theory for an arbitrary number interacting systems using an algorithm based on block-diagonal matrices. Along with the methodological development, the effects of the BSSE on the properties of molecular complexes have been discussed in detail. The CP and CHA methodologies are used for the determination of BSSE-corrected molecular complexes properties related to the Potential Energy Surfaces and molecular wavefunction, respectively. First, the behaviour of both BSSE-correction schemes are systematically compared at different levels of theory and basis sets for a number of hydrogen-bonded complexes. The Complete Basis Set (CBS) limit of both uncorrected and CP-corrected molecular properties like stabilization energies and intermolecular distances has also been determined, showing the capital importance of the BSSE correction. Several controversial topics of the BSSE correction are addressed as well. The application of the counterpoise method is applied to internal rotational barriers. The importance of the nuclear relaxation term is also pointed out. The viability of the CP method for dealing with charged complexes and the BSSE effects on the double-well PES blue-shifted hydrogen bonds is also studied in detail. In the case of the molecular clusters the effect of high-order BSSE effects introduced with the hierarchical counterpoise scheme is also determined. The effect of the BSSE on the electron density-related properties is also addressed. The first-order electron density obtained with the CHA/F and CHA/DFT methodologies was used to assess, both graphically and numerically, the redistribution of the charge density upon BSSE-correction. Several tools like the Atoms in Molecules topologycal analysis, density difference maps, Quantum Molecular Similarity, and Chemical Energy Component Analysis were used to deeply analyze, for the first time, the BSSE effects on the electron density of several hydrogen bonded complexes of increasing size. The indirect effect of the BSSE on intermolecular perturbation theory results is also pointed out It is shown that for a BSSE-free SAPT study of hydrogen fluoride clusters, the use of a counterpoise-corrected PES is essential in order to determine the proper molecular geometry to perform the SAPT analysis.
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
Three conjugated organic molecules that span a range of polarity and valence-bond/charge transfer characteristics were studied. It was found that dispersion can be insignificant, and that adequate treatment can be achieved with frequency-dependent field-induced vibrational coordinates (FD-FICs)
Resumo:
Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small
Resumo:
A general reduced dimensionality finite field nuclear relaxation method for calculating vibrational nonlinear optical properties of molecules with large contributions due to anharmonic motions is introduced. In an initial application to the umbrella (inversion) motion of NH3 it is found that difficulties associated with a conventional single well treatment are overcome and that the particular definition of the inversion coordinate is not important. Future applications are described
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
A procedure based on quantum molecular similarity measures (QMSM) has been used to compare electron densities obtained from conventional ab initio and density functional methodologies at their respective optimized geometries. This method has been applied to a series of small molecules which have experimentally known properties and molecular bonds of diverse degrees of ionicity and covalency. Results show that in most cases the electron densities obtained from density functional methodologies are of a similar quality than post-Hartree-Fock generalized densities. For molecules where Hartree-Fock methodology yields erroneous results, the density functional methodology is shown to yield usually more accurate densities than those provided by the second order Møller-Plesset perturbation theory
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
The level of ab initio theory which is necessary to compute reliable values for the static and dynamic (hyper)polarizabilities of three medium size π-conjugated organic nonlinear optical (NLO) molecules is investigated. With the employment of field-induced coordinates in combination with a finite field procedure, the calculations were made possible. It is stated that to obtain reasonable values for the various individual contributions to the (hyper)polarizability, it is necessary to include electron correlation. Based on the results, the convergence of the usual perturbation treatment for vibrational anharmonicity was examined
Resumo:
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
Resumo:
En aquest treball s'analitza la contribució estèrica de les molècules a les seves propietats químiques i físiques, mitjançant l'avaluació del seu volum i de la seva mesura de semblança, a partir d'ara definits com a descriptors moleculars de primer ordre. La difeèsncia entre aquests dos conceptes ha estat aclarida: mentre que el volum és la magnitud de l'espai que ocupa la molècula com a entitat global, la mesura de semblança ens dóna una idea de com està distribuïda la densitat electrònica al llarg d'aquest volum, i reflecteix més les diferències locals existents. L'ús de diverses aproximacions per a l'obtenció d'ambdós valors ha estat analitzat sobre diferents classes d'isòmers