3 resultados para mistimed covariates
em Universitat de Girona, Spain
Resumo:
This analysis was stimulated by the real data analysis problem of household expenditure data. The full dataset contains expenditure data for a sample of 1224 households. The expenditure is broken down at 2 hierarchical levels: 9 major levels (e.g. housing, food, utilities etc.) and 92 minor levels. There are also 5 factors and 5 covariates at the household level. Not surprisingly, there are a small number of zeros at the major level, but many zeros at the minor level. The question is how best to model the zeros. Clearly, models that try to add a small amount to the zero terms are not appropriate in general as at least some of the zeros are clearly structural, e.g. alcohol/tobacco for households that are teetotal. The key question then is how to build suitable conditional models. For example, is the sub-composition of spending excluding alcohol/tobacco similar for teetotal and non-teetotal households? In other words, we are looking for sub-compositional independence. Also, what determines whether a household is teetotal? Can we assume that it is independent of the composition? In general, whether teetotal will clearly depend on the household level variables, so we need to be able to model this dependence. The other tricky question is that with zeros on more than one component, we need to be able to model dependence and independence of zeros on the different components. Lastly, while some zeros are structural, others may not be, for example, for expenditure on durables, it may be chance as to whether a particular household spends money on durables within the sample period. This would clearly be distinguishable if we had longitudinal data, but may still be distinguishable by looking at the distribution, on the assumption that random zeros will usually be for situations where any non-zero expenditure is not small. While this analysis is based on around economic data, the ideas carry over to many other situations, including geological data, where minerals may be missing for structural reasons (similar to alcohol), or missing because they occur only in random regions which may be missed in a sample (similar to the durables)
Resumo:
This paper examines a dataset which is modeled well by the Poisson-Log Normal process and by this process mixed with Log Normal data, which are both turned into compositions. This generates compositional data that has zeros without any need for conditional models or assuming that there is missing or censored data that needs adjustment. It also enables us to model dependence on covariates and within the composition
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequent in practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of the sample, thus producing a transfer of mass from some components to other ones, but preserving the total mass present in the system. This evolution is traditionally modelled as a system of ordinary di erential equations of the mass of each component. However, this kind of evolution can be decomposed into a compositional change, expressed in terms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despite of some subcompositions behaving linearly. The goal is to study the characteristics of such simplicial systems of di erential equa- tions such as linearity and stability. This is performed extracting the compositional dif ferential equations from the mass equations. Then, simplicial derivatives are expressed in coordinates of the simplex, thus reducing the problem to the standard theory of systems of di erential equations, including stability. The characterisation of stability of these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and the associated behaviour of the orbits are the main tools. For a three component system, these orbits can be plotted both in coordinates of the simplex or in a ternary diagram. A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is a radioactive decay