7 resultados para mathematical morphology

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel metric comparison of the appendicular skeleton (fore and hind limb) of different vertebrates using the Compositional Data Analysis (CDA) methodological approach it’s presented. 355 specimens belonging in various taxa of Dinosauria (Sauropodomorpha, Theropoda, Ornithischia and Aves) and Mammalia (Prothotheria, Metatheria and Eutheria) were analyzed with CDA. A special focus has been put on Sauropodomorpha dinosaurs and the Aitchinson distance has been used as a measure of disparity in limb elements proportions to infer some aspects of functional morphology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproductive morphology of the Mediterranean red alga Kallymenia patens is described for the first time, confirming its position in the genus. K. patens is characterized by a non-procarpic female reproductive apparatus, carpogonial branch systems consisting of supporting cells bearing both three-celled carpogonial branches and subsidiary cells that lack a hypogynous cell and carpogonium; fusion cells develop numerous connecting filaments, and tetrasporangia are scattered over the thallus and are probably cruciately divided. Old fertile spathulate specimens of K. patens are morphologically similar to K. spathulata, but they can be distinguished by the length of spathulated proliferations (up to 0.6 cm and 6 cm, respectively), the length of inner cortical cells (up to 70 and 30 μm, respectively), and the gonimoblast location (in proliferations from the perennial part of the blade and over all the thallus surface, respectively)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology and reproductive structures of Mediterranean species of the genus Nemastoma J. Agardh, nom. cons. (Nemastomataceae, Nemastomatales): Nemastoma dichotomum and N. dumontioides

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple numerical model which calculates the kinetics of crystallization involving randomly distributed nucleation and isotropic growth is presented. The model can be applied to different thermal histories and no restrictions are imposed on the time and the temperature dependences of the nucleation and growth rates. We also develop an algorithm which evaluates the corresponding emerging grain-size distribution. The algorithm is easy to implement and particularly flexible, making it possible to simulate several experimental conditions. Its simplicity and minimal computer requirements allow high accuracy for two- and three-dimensional growth simulations. The algorithm is applied to explore the grain morphology development during isothermal treatments for several nucleation regimes. In particular, thermal nucleation, preexisting nuclei, and the combination of both nucleation mechanisms are analyzed. For the first two cases, the universal grain-size distribution is obtained. The high accuracy of the model is stated from its comparison to analytical predictions. Finally, the validity of the Kolmogorov-Johnson-Mehl-Avrami model SSSR, is verified for all the cases studied