4 resultados para large deviation theory

em Universitat de Girona, Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy decomposition scheme proposed in a recent paper has been realized by performing numerical integrations. The sample calculations carried out for some simple molecules show excellent agreement with the chemical picture of molecules, indicating that such an energy decomposition analysis can be useful from the point of view of connecting quantum mechanics with the genuine chemical concepts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es presenta un nou algorisme per a la diagonalització de matrius amb diagonal dominant. Es mostra la seva eficàcia en el tractament de matrius no simètriques, amb elements definits sobre el cos complex i, fins i tot, de grans dimensions. Es posa de manifest la senzillesa del mètode així com la facilitat d'implementació en forma de codi de programació. Es comenten els seus avantatges i característiques limitants, així com algunes de les millores que es poden implementar. Finalment, es mostren alguns exemples numèrics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this work presents an accurate analysis of the most relevant 3D registration techniques, including initial pose estimation, pairwise registration and multiview registration strategies. A new classification has been proposed, based on both the applications and the approach of the methods that have been discussed. The main contribution of this thesis is the proposal of a new 3D multiview registration strategy. The proposed approach detects revisited regions obtaining cycles of views that are used to reduce the inaccuracies that may exist in the final model due to error propagation. The method takes advantage of both global and local information of the registration process, using graph theory techniques in order correlate multiple views and minimize the propagated error by registering the views in an optimal way. The proposed method has been tested using both synthetic and real data, in order to show and study its behavior and demonstrate its reliability.