1 resultado para isolated trees
em Universitat de Girona, Spain
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Aquatic Commons (22)
- ARCA - Repositório Institucional da FIOCRUZ (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (50)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (1)
- Brock University, Canada (10)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (47)
- CentAUR: Central Archive University of Reading - UK (96)
- Center for Jewish History Digital Collections (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (117)
- Cochin University of Science & Technology (CUSAT), India (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (30)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (19)
- Indian Institute of Science - Bangalore - Índia (69)
- Instituto Politécnico do Porto, Portugal (6)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (166)
- Queensland University of Technology - ePrints Archive (62)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (96)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (4)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
A new method for the automated selection of colour features is described. The algorithm consists of two stages of processing. In the first, a complete set of colour features is calculated for every object of interest in an image. In the second stage, each object is mapped into several n-dimensional feature spaces in order to select the feature set with the smallest variables able to discriminate the remaining objects. The evaluation of the discrimination power for each concrete subset of features is performed by means of decision trees composed of linear discrimination functions. This method can provide valuable help in outdoor scene analysis where no colour space has been demonstrated as being the most suitable. Experiment results recognizing objects in outdoor scenes are reported