7 resultados para information bottleneck method
em Universitat de Girona, Spain
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach
Resumo:
This paper describes the basis of citation auctions as a new approach to selecting scientific papers for publication. Our main idea is to use an auction for selecting papers for publication through - differently from the state of the art - bids that consist of the number of citations that a scientist expects to receive if the paper is published. Hence, a citation auction is the selection process itself, and no reviewers are involved. The benefits of the proposed approach are two-fold. First, the cost of refereeing will be either totally eliminated or significantly reduced, because the process of citation auction does not need prior understanding of the paper's content to judge the quality of its contribution. Additionally, the method will not prejudge the content of the paper, so it will increase the openness of publications to new ideas. Second, scientists will be much more committed to the quality of their papers, paying close attention to distributing and explaining their papers in detail to maximize the number of citations that the paper receives. Sample analyses of the number of citations collected in papers published in years 1999-2004 for one journal, and in years 2003-2005 for a series of conferences (in a totally different discipline), via Google scholar, are provided. Finally, a simple simulation of an auction is given to outline the behaviour of the citation auction approach
Resumo:
The human visual ability to perceive depth looks like a puzzle. We perceive three-dimensional spatial information quickly and efficiently by using the binocular stereopsis of our eyes and, what is mote important the learning of the most common objects which we achieved through living. Nowadays, modelling the behaviour of our brain is a fiction, that is why the huge problem of 3D perception and further, interpretation is split into a sequence of easier problems. A lot of research is involved in robot vision in order to obtain 3D information of the surrounded scene. Most of this research is based on modelling the stereopsis of humans by using two cameras as if they were two eyes. This method is known as stereo vision and has been widely studied in the past and is being studied at present, and a lot of work will be surely done in the future. This fact allows us to affirm that this topic is one of the most interesting ones in computer vision. The stereo vision principle is based on obtaining the three dimensional position of an object point from the position of its projective points in both camera image planes. However, before inferring 3D information, the mathematical models of both cameras have to be known. This step is known as camera calibration and is broadly describes in the thesis. Perhaps the most important problem in stereo vision is the determination of the pair of homologue points in the two images, known as the correspondence problem, and it is also one of the most difficult problems to be solved which is currently investigated by a lot of researchers. The epipolar geometry allows us to reduce the correspondence problem. An approach to the epipolar geometry is describes in the thesis. Nevertheless, it does not solve it at all as a lot of considerations have to be taken into account. As an example we have to consider points without correspondence due to a surface occlusion or simply due to a projection out of the camera scope. The interest of the thesis is focused on structured light which has been considered as one of the most frequently used techniques in order to reduce the problems related lo stereo vision. Structured light is based on the relationship between a projected light pattern its projection and an image sensor. The deformations between the pattern projected into the scene and the one captured by the camera, permits to obtain three dimensional information of the illuminated scene. This technique has been widely used in such applications as: 3D object reconstruction, robot navigation, quality control, and so on. Although the projection of regular patterns solve the problem of points without match, it does not solve the problem of multiple matching, which leads us to use hard computing algorithms in order to search the correct matches. In recent years, another structured light technique has increased in importance. This technique is based on the codification of the light projected on the scene in order to be used as a tool to obtain an unique match. Each token of light is imaged by the camera, we have to read the label (decode the pattern) in order to solve the correspondence problem. The advantages and disadvantages of stereo vision against structured light and a survey on coded structured light are related and discussed. The work carried out in the frame of this thesis has permitted to present a new coded structured light pattern which solves the correspondence problem uniquely and robust. Unique, as each token of light is coded by a different word which removes the problem of multiple matching. Robust, since the pattern has been coded using the position of each token of light with respect to both co-ordinate axis. Algorithms and experimental results are included in the thesis. The reader can see examples 3D measurement of static objects, and the more complicated measurement of moving objects. The technique can be used in both cases as the pattern is coded by a single projection shot. Then it can be used in several applications of robot vision. Our interest is focused on the mathematical study of the camera and pattern projector models. We are also interested in how these models can be obtained by calibration, and how they can be used to obtained three dimensional information from two correspondence points. Furthermore, we have studied structured light and coded structured light, and we have presented a new coded structured light pattern. However, in this thesis we started from the assumption that the correspondence points could be well-segmented from the captured image. Computer vision constitutes a huge problem and a lot of work is being done at all levels of human vision modelling, starting from a)image acquisition; b) further image enhancement, filtering and processing, c) image segmentation which involves thresholding, thinning, contour detection, texture and colour analysis, and so on. The interest of this thesis starts in the next step, usually known as depth perception or 3D measurement.
Resumo:
La tesis se centra en la Visión por Computador y, más concretamente, en la segmentación de imágenes, la cual es una de las etapas básicas en el análisis de imágenes y consiste en la división de la imagen en un conjunto de regiones visualmente distintas y uniformes considerando su intensidad, color o textura. Se propone una estrategia basada en el uso complementario de la información de región y de frontera durante el proceso de segmentación, integración que permite paliar algunos de los problemas básicos de la segmentación tradicional. La información de frontera permite inicialmente identificar el número de regiones presentes en la imagen y colocar en el interior de cada una de ellas una semilla, con el objetivo de modelar estadísticamente las características de las regiones y definir de esta forma la información de región. Esta información, conjuntamente con la información de frontera, es utilizada en la definición de una función de energía que expresa las propiedades requeridas a la segmentación deseada: uniformidad en el interior de las regiones y contraste con las regiones vecinas en los límites. Un conjunto de regiones activas inician entonces su crecimiento, compitiendo por los píxeles de la imagen, con el objetivo de optimizar la función de energía o, en otras palabras, encontrar la segmentación que mejor se adecua a los requerimientos exprsados en dicha función. Finalmente, todo esta proceso ha sido considerado en una estructura piramidal, lo que nos permite refinar progresivamente el resultado de la segmentación y mejorar su coste computacional. La estrategia ha sido extendida al problema de segmentación de texturas, lo que implica algunas consideraciones básicas como el modelaje de las regiones a partir de un conjunto de características de textura y la extracción de la información de frontera cuando la textura es presente en la imagen. Finalmente, se ha llevado a cabo la extensión a la segmentación de imágenes teniendo en cuenta las propiedades de color y textura. En este sentido, el uso conjunto de técnicas no-paramétricas de estimación de la función de densidad para la descripción del color, y de características textuales basadas en la matriz de co-ocurrencia, ha sido propuesto para modelar adecuadamente y de forma completa las regiones de la imagen. La propuesta ha sido evaluada de forma objetiva y comparada con distintas técnicas de integración utilizando imágenes sintéticas. Además, se han incluido experimentos con imágenes reales con resultados muy positivos.