7 resultados para flaw detection techniques
em Universitat de Girona, Spain
Resumo:
Detecting changes between images of the same scene taken at different times is of great interest for monitoring and understanding the environment. It is widely used for on-land application but suffers from different constraints. Unfortunately, Change detection algorithms require highly accurate geometric and photometric registration. This requirement has precluded their use in underwater imagery in the past. In this paper, the change detection techniques available nowadays for on-land application were analyzed and a method to automatically detect the changes in sequences of underwater images is proposed. Target application scenarios are habitat restoration sites, or area monitoring after sudden impacts from hurricanes or ship groundings. The method is based on the creation of a 3D terrain model from one image sequence over an area of interest. This model allows for synthesizing textured views that correspond to the same viewpoints of a second image sequence. The generated views are photometrically matched and corrected against the corresponding frames from the second sequence. Standard change detection techniques are then applied to find areas of difference. Additionally, the paper shows that it is possible to detect false positives, resulting from non-rigid objects, by applying the same change detection method to the first sequence exclusively. The developed method was able to correctly find the changes between two challenging sequences of images from a coral reef taken one year apart and acquired with two different cameras
Resumo:
Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system
Resumo:
La presencia de microorganismos patógenos en alimentos es uno de los problemas esenciales en salud pública, y las enfermedades producidas por los mismos es una de las causas más importantes de enfermedad. Por tanto, la aplicación de controles microbiológicos dentro de los programas de aseguramiento de la calidad es una premisa para minimizar el riesgo de infección de los consumidores. Los métodos microbiológicos clásicos requieren, en general, el uso de pre-enriquecimientos no-selectivos, enriquecimientos selectivos, aislamiento en medios selectivos y la confirmación posterior usando pruebas basadas en la morfología, bioquímica y serología propias de cada uno de los microorganismos objeto de estudio. Por lo tanto, estos métodos son laboriosos, requieren un largo proceso para obtener resultados definitivos y, además, no siempre pueden realizarse. Para solucionar estos inconvenientes se han desarrollado diversas metodologías alternativas para la detección identificación y cuantificación de microorganismos patógenos de origen alimentario, entre las que destacan los métodos inmunológicos y moleculares. En esta última categoría, la técnica basada en la reacción en cadena de la polimerasa (PCR) se ha convertido en la técnica diagnóstica más popular en microbiología, y recientemente, la introducción de una mejora de ésta, la PCR a tiempo real, ha producido una segunda revolución en la metodología diagnóstica molecular, como pude observarse por el número creciente de publicaciones científicas y la aparición continua de nuevos kits comerciales. La PCR a tiempo real es una técnica altamente sensible -detección de hasta una molécula- que permite la cuantificación exacta de secuencias de ADN específicas de microorganismos patógenos de origen alimentario. Además, otras ventajas que favorecen su implantación potencial en laboratorios de análisis de alimentos son su rapidez, sencillez y el formato en tubo cerrado que puede evitar contaminaciones post-PCR y favorece la automatización y un alto rendimiento. En este trabajo se han desarrollado técnicas moleculares (PCR y NASBA) sensibles y fiables para la detección, identificación y cuantificación de bacterias patogénicas de origen alimentario (Listeria spp., Mycobacterium avium subsp. paratuberculosis y Salmonella spp.). En concreto, se han diseñado y optimizado métodos basados en la técnica de PCR a tiempo real para cada uno de estos agentes: L. monocytogenes, L. innocua, Listeria spp. M. avium subsp. paratuberculosis, y también se ha optimizado y evaluado en diferentes centros un método previamente desarrollado para Salmonella spp. Además, se ha diseñado y optimizado un método basado en la técnica NASBA para la detección específica de M. avium subsp. paratuberculosis. También se evaluó la aplicación potencial de la técnica NASBA para la detección específica de formas viables de este microorganismo. Todos los métodos presentaron una especificidad del 100 % con una sensibilidad adecuada para su aplicación potencial a muestras reales de alimentos. Además, se han desarrollado y evaluado procedimientos de preparación de las muestras en productos cárnicos, productos pesqueros, leche y agua. De esta manera se han desarrollado métodos basados en la PCR a tiempo real totalmente específicos y altamente sensibles para la determinación cuantitativa de L. monocytogenes en productos cárnicos y en salmón y productos derivados como el salmón ahumado y de M. avium subsp. paratuberculosis en muestras de agua y leche. Además este último método ha sido también aplicado para evaluar la presencia de este microorganismo en el intestino de pacientes con la enfermedad de Crohn's, a partir de biopsias obtenidas de colonoscopia de voluntarios afectados. En conclusión, este estudio presenta ensayos moleculares selectivos y sensibles para la detección de patógenos en alimentos (Listeria spp., Mycobacterium avium subsp. paratuberculosis) y para una rápida e inambigua identificación de Salmonella spp. La exactitud relativa de los ensayos ha sido excelente, si se comparan con los métodos microbiológicos de referencia y pueden serusados para la cuantificación de tanto ADN genómico como de suspensiones celulares. Por otro lado, la combinación con tratamientos de preamplificación ha resultado ser de gran eficiencia para el análisis de las bacterias objeto de estudio. Por tanto, pueden constituir una estrategia útil para la detección rápida y sensible de patógenos en alimentos y deberían ser una herramienta adicional al rango de herramientas diagnósticas disponibles para el estudio de patógenos de origen alimentario.
Resumo:
All of the imputation techniques usually applied for replacing values below the detection limit in compositional data sets have adverse effects on the variability. In this work we propose a modification of the EM algorithm that is applied using the additive log-ratio transformation. This new strategy is applied to a compositional data set and the results are compared with the usual imputation techniques
Resumo:
One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
El desalineamiento temporal es la incorrespondencia de dos señales debido a una distorsión en el eje temporal. La Detección y Diagnóstico de Fallas (Fault Detection and Diagnosis-FDD) permite la detección, el diagnóstico y la corrección de fallos en un proceso. La metodología usada en FDD está dividida en dos categorías: técnicas basadas en modelos y no basadas en modelos. Esta tesis doctoral trata sobre el estudio del efecto del desalineamiento temporal en FDD. Nuestra atención se enfoca en el análisis y el diseño de sistemas FDD en caso de problemas de comunicación de datos, como retardos y pérdidas. Se proponen dos técnicas para reducir estos problemas: una basada en programación dinámica y la otra en optimización. Los métodos propuestos han sido validados sobre diferentes sistemas dinámicos: control de posición de un motor de corriente continua, una planta de laboratorio y un problema de sistemas eléctricos conocido como hueco de tensión.