2 resultados para end-to-end delay
em Universitat de Girona, Spain
Resumo:
Muchas de las nuevas aplicaciones emergentes de Internet tales como TV sobre Internet, Radio sobre Internet,Video Streamming multi-punto, entre otras, necesitan los siguientes requerimientos de recursos: ancho de banda consumido, retardo extremo-a-extremo, tasa de paquetes perdidos, etc. Por lo anterior, es necesario formular una propuesta que especifique y provea para este tipo de aplicaciones los recursos necesarios para su buen funcionamiento. En esta tesis, proponemos un esquema de ingeniería de tráfico multi-objetivo a través del uso de diferentes árboles de distribución para muchos flujos multicast. En este caso, estamos usando la aproximación de múltiples caminos para cada nodo egreso y de esta forma obtener la aproximación de múltiples árboles y a través de esta forma crear diferentes árboles multicast. Sin embargo, nuestra propuesta resuelve la fracción de la división del tráfico a través de múltiples árboles. La propuesta puede ser aplicada en redes MPLS estableciendo rutas explícitas en eventos multicast. En primera instancia, el objetivo es combinar los siguientes objetivos ponderados dentro de una métrica agregada: máxima utilización de los enlaces, cantidad de saltos, el ancho de banda total consumido y el retardo total extremo-a-extremo. Nosotros hemos formulado esta función multi-objetivo (modelo MHDB-S) y los resultados obtenidos muestran que varios objetivos ponderados son reducidos y la máxima utilización de los enlaces es minimizada. El problema es NP-duro, por lo tanto, un algoritmo es propuesto para optimizar los diferentes objetivos. El comportamiento que obtuvimos usando este algoritmo es similar al que obtuvimos con el modelo. Normalmente, durante la transmisión multicast los nodos egresos pueden salir o entrar del árbol y por esta razón en esta tesis proponemos un esquema de ingeniería de tráfico multi-objetivo usando diferentes árboles para grupos multicast dinámicos. (en el cual los nodos egresos pueden cambiar durante el tiempo de vida de la conexión). Si un árbol multicast es recomputado desde el principio, esto podría consumir un tiempo considerable de CPU y además todas las comuicaciones que están usando el árbol multicast serán temporalmente interrumpida. Para aliviar estos inconvenientes, proponemos un modelo de optimización (modelo dinámico MHDB-D) que utilice los árboles multicast previamente computados (modelo estático MHDB-S) adicionando nuevos nodos egreso. Usando el método de la suma ponderada para resolver el modelo analítico, no necesariamente es correcto, porque es posible tener un espacio de solución no convexo y por esta razón algunas soluciones pueden no ser encontradas. Adicionalmente, otros tipos de objetivos fueron encontrados en diferentes trabajos de investigación. Por las razones mencionadas anteriormente, un nuevo modelo llamado GMM es propuesto y para dar solución a este problema un nuevo algoritmo usando Algoritmos Evolutivos Multi-Objetivos es propuesto. Este algoritmo esta inspirado por el algoritmo Strength Pareto Evolutionary Algorithm (SPEA). Para dar una solución al caso dinámico con este modelo generalizado, nosotros hemos propuesto un nuevo modelo dinámico y una solución computacional usando Breadth First Search (BFS) probabilístico. Finalmente, para evaluar nuestro esquema de optimización propuesto, ejecutamos diferentes pruebas y simulaciones. Las principales contribuciones de esta tesis son la taxonomía, los modelos de optimización multi-objetivo para los casos estático y dinámico en transmisiones multicast (MHDB-S y MHDB-D), los algoritmos para dar solución computacional a los modelos. Finalmente, los modelos generalizados también para los casos estático y dinámico (GMM y GMM Dinámico) y las propuestas computacionales para dar slución usando MOEA y BFS probabilístico.
Resumo:
The characteristics of service independence and flexibility of ATM networks make the control problems of such networks very critical. One of the main challenges in ATM networks is to design traffic control mechanisms that enable both economically efficient use of the network resources and desired quality of service to higher layer applications. Window flow control mechanisms of traditional packet switched networks are not well suited to real time services, at the speeds envisaged for the future networks. In this work, the utilisation of the Probability of Congestion (PC) as a bandwidth decision parameter is presented. The validity of PC utilisation is compared with QOS parameters in buffer-less environments when only the cell loss ratio (CLR) parameter is relevant. The convolution algorithm is a good solution for CAC in ATM networks with small buffers. If the source characteristics are known, the actual CLR can be very well estimated. Furthermore, this estimation is always conservative, allowing the retention of the network performance guarantees. Several experiments have been carried out and investigated to explain the deviation between the proposed method and the simulation. Time parameters for burst length and different buffer sizes have been considered. Experiments to confine the limits of the burst length with respect to the buffer size conclude that a minimum buffer size is necessary to achieve adequate cell contention. Note that propagation delay is a no dismiss limit for long distance and interactive communications, then small buffer must be used in order to minimise delay. Under previous premises, the convolution approach is the most accurate method used in bandwidth allocation. This method gives enough accuracy in both homogeneous and heterogeneous networks. But, the convolution approach has a considerable computation cost and a high number of accumulated calculations. To overcome this drawbacks, a new method of evaluation is analysed: the Enhanced Convolution Approach (ECA). In ECA, traffic is grouped in classes of identical parameters. By using the multinomial distribution function instead of the formula-based convolution, a partial state corresponding to each class of traffic is obtained. Finally, the global state probabilities are evaluated by multi-convolution of the partial results. This method avoids accumulated calculations and saves storage requirements, specially in complex scenarios. Sorting is the dominant factor for the formula-based convolution, whereas cost evaluation is the dominant factor for the enhanced convolution. A set of cut-off mechanisms are introduced to reduce the complexity of the ECA evaluation. The ECA also computes the CLR for each j-class of traffic (CLRj), an expression for the CLRj evaluation is also presented. We can conclude that by combining the ECA method with cut-off mechanisms, utilisation of ECA in real-time CAC environments as a single level scheme is always possible.