4 resultados para discrete time survival analysis
em Universitat de Girona, Spain
Resumo:
La tesis pretende explorar acercamientos computacionalmente confiables y eficientes de contractivo MPC para sistemas de tiempo discreto. Dos tipos de contractivo MPC han sido estudiados: MPC con coacción contractiva obligatoria y MPC con una secuencia contractiva de conjuntos controlables. Las técnicas basadas en optimización convexa y análisis de intervalos son aplicadas para tratar MPC contractivo lineal y no lineal, respectivamente. El análisis de intervalos clásicos es ampliado a zonotopes en la geometría para diseñar un conjunto invariante de control terminal para el modo dual de MPC. También es ampliado a intervalos modales para tener en cuenta la modalidad al calcula de conjuntos controlables robustos con una interpretación semántica clara. Los instrumentos de optimización convexa y análisis de intervalos han sido combinados para mejorar la eficacia de contractive MPC para varias clases de sistemas de tiempo discreto inciertos no lineales limitados. Finalmente, los dos tipos dirigidos de contractivo MPC han sido aplicados para controlar un Torneo de Fútbol de Copa Mundial de Micro Robot (MiroSot) y un Tanque-Reactor de Mezcla Continua (CSTR), respectivamente.
Resumo:
A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts
Resumo:
R from http://www.r-project.org/ is ‘GNU S’ – a language and environment for statistical computing and graphics. The environment in which many classical and modern statistical techniques have been implemented, but many are supplied as packages. There are 8 standard packages and many more are available through the cran family of Internet sites http://cran.r-project.org . We started to develop a library of functions in R to support the analysis of mixtures and our goal is a MixeR package for compositional data analysis that provides support for operations on compositions: perturbation and power multiplication, subcomposition with or without residuals, centering of the data, computing Aitchison’s, Euclidean, Bhattacharyya distances, compositional Kullback-Leibler divergence etc. graphical presentation of compositions in ternary diagrams and tetrahedrons with additional features: barycenter, geometric mean of the data set, the percentiles lines, marking and coloring of subsets of the data set, theirs geometric means, notation of individual data in the set . . . dealing with zeros and missing values in compositional data sets with R procedures for simple and multiplicative replacement strategy, the time series analysis of compositional data. We’ll present the current status of MixeR development and illustrate its use on selected data sets
Resumo:
Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades.