2 resultados para decompositions
em Universitat de Girona, Spain
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table