3 resultados para credit risk model.
em Universitat de Girona, Spain
Resumo:
Los objetivos de la tesis son: 1.- Estudiar la relación entre la incidencia y mortalidad por cáncer y los factores medioambientales, en particular la contaminación atmosférica, controlando por factores socioeconómicos. 2.- Utilizar aquellos métodos de estadÃstica espacial apropiados para cada tipo de diseño. 3.- Distinguir en los modelos las diferentes fuentes de extra-variabilidad espacial. 4.- Controlar el problema de exceso de ceros inherente a alguna de las neoplasias de interés medioambientales. Conclusiones: - Tanto la incidencia como la mortalidad de las neoplasias, presentaron dos fuentes de extravariación. La extravariaicón espacial, por la que unidades vecinas tienden a presentar razones de incidencia/mortalidad similares, y la heterogeneidad no espacial. En general la extravariabilidad espacial ha resultado ser mucho mayor que la no espacial. - Para suavizar las RIE/RME correspondientes a variables con un porcentaje de ceros superior al40-50% debe utilizarse un modelo que capture este comportamiento. - El mejor modelo en términos de ajuste para recoger el exceso de ceros en las variables de interés ha resultado ser el modelo mixto de riesgo relativo. - Las RIE/RME suavizadas presentan un patrón geográfico claro sólo en algunas neoplasias de interés medioambiental. - Parte de la variabilidad remanente en las RIE/RME suavizadas pudo ser explicada mediante la introducción de variables explicativas, en particular la contaminación atmosférica y variables socioeconómicas. -Como los contaminantes atmosféricos fueron observados en un diseño geoestadÃstico y las neoplasias de interés mediambiental lo fueron en un diseño en rejilla se modelizó la superficie de exposición. - El efecto del contaminante en cada municipio/sección censal se aproximó introduciendo en el modelo el valor promedio en cada área y la variabilidad intra-área. - El efecto del contaminante se consideró aleatorio, en el sentido de que podrÃa ser diferente en cada una de las áreas. - Las condiciones socioeconómicas fueron otra de las variables que redujeron la variabilidad remanente en las RIE/RME suavizadas. -Las variables explicativas observadas con un diseño en rejilla, como el Ãndice de privación, se introdujeron en el modelo como efectos fijos. - El efecto de la privación sobre la incidencia y/o mortalidad por cáncer de tráquea, bronquios y pulmón, controlando por contaminantes atmosféricos, fue mayor en las mujeres que en los hombres. -Altas concentraciones de contaminantes atmosféricos aumentan el riesgo de padecer neoplasias de interés medioambiental, controlando por condiciones socioeconómicas.
Resumo:
The activated sludge and anaerobic digestion processes have been modelled in widely accepted models. Nevertheless, these models still have limitations when describing operational problems of microbiological origin. The aim of this thesis is to develop a knowledge-based model to simulate risk of plant-wide operational problems of microbiological origin.For the risk model heuristic knowledge from experts and literature was implemented in a rule-based system. Using fuzzy logic, the system can infer a risk index for the main operational problems of microbiological origin (i.e. filamentous bulking, biological foaming, rising sludge and deflocculation). To show the results of the risk model, it was implemented in the Benchmark Simulation Models. This allowed to study the risk model's response in different scenarios and control strategies. The risk model has shown to be really useful providing a third criterion to evaluate control strategies apart from the economical and environmental criteria.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in meal estimation