4 resultados para contour map

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ka-Map ("ka" as in ka-boom!) is an open source project that is aimed at providing a javascript API for developing highly interactive web-mapping interfaces using features available in modern web browsers. ka-Map currently has a number of interesting features. It sports the usual array of user interface elements such as: interactive, continuous panning without reloading the page; keyboard navigation options (zooming, panning); zooming to pre-set scales; interactive scalebar, legend and keymap support; optional layer control on client side; server side tile caching

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method to achieve the most relevant contours of an image. The presented method proposes to integrate the information of the local contours from chromatic components such as H, S and I, taking into account the criteria of coherence of the local contour orientation values obtained from each of these components. The process is based on parametrizing pixel by pixel the local contours (magnitude and orientation values) from the H, S and I images. This process is carried out individually for each chromatic component. If the criterion of dispersion of the obtained orientation values is high, this chromatic component will lose relevance. A final processing integrates the extracted contours of the three chromatic components, generating the so-called integrated contours image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In image segmentation, clustering algorithms are very popular because they are intuitive and, some of them, easy to implement. For instance, the k-means is one of the most used in the literature, and many authors successfully compare their new proposal with the results achieved by the k-means. However, it is well known that clustering image segmentation has many problems. For instance, the number of regions of the image has to be known a priori, as well as different initial seed placement (initial clusters) could produce different segmentation results. Most of these algorithms could be slightly improved by considering the coordinates of the image as features in the clustering process (to take spatial region information into account). In this paper we propose a significant improvement of clustering algorithms for image segmentation. The method is qualitatively and quantitative evaluated over a set of synthetic and real images, and compared with classical clustering approaches. Results demonstrate the validity of this new approach