62 resultados para compositional processes
em Universitat de Girona, Spain
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…
Resumo:
In standard multivariate statistical analysis common hypotheses of interest concern changes in mean vectors and subvectors. In compositional data analysis it is now well established that compositional change is most readily described in terms of the simplicial operation of perturbation and that subcompositions replace the marginal concept of subvectors. To motivate the statistical developments of this paper we present two challenging compositional problems from food production processes. Against this background the relevance of perturbations and subcompositions can be clearly seen. Moreover we can identify a number of hypotheses of interest involving the specification of particular perturbations or differences between perturbations and also hypotheses of subcompositional stability. We identify the two problems as being the counterpart of the analysis of paired comparison or split plot experiments and of separate sample comparative experiments in the jargon of standard multivariate analysis. We then develop appropriate estimation and testing procedures for a complete lattice of relevant compositional hypotheses
Resumo:
The chemical composition of sediments and rocks, as well as their distribution at the Martian surface, represent a long term archive of processes, which have formed the planetary surface. A survey of chemical compositions by means of Compositional Data Analysis represents a valuable tool to extract direct evidence for weathering processes and allows to quantify weathering and sedimentation rates. clr-biplot techniques are applied for visualization of chemical relationships across the surface (“chemical maps”). The variability among individual suites of data is further analyzed by means of clr-PCA, in order to extract chemical alteration vectors between fresh rocks and their crusts and for an assessment of different source reservoirs accessible to soil formation. Both techniques are applied to elucidate the influence of remote weathering by combined analysis of several soil forming branches. Vector analysis in the Simplex provides the opportunity to study atmosphere surface interactions, including the role and composition of volcanic gases
Resumo:
Isotopic data are currently becoming an important source of information regarding sources, evolution and mixing processes of water in hydrogeologic systems. However, it is not clear how to treat with statistics the geochemical data and the isotopic data together. We propose to introduce the isotopic information as new parts, and apply compositional data analysis with the resulting increased composition. Results are equivalent to downscale the classical isotopic delta variables, because they are already relative (as needed in the compositional framework) and isotopic variations are almost always very small. This methodology is illustrated and tested with the study of the Llobregat River Basin (Barcelona, NE Spain), where it is shown that, though very small, isotopic variations comp lement geochemical principal components, and help in the better identification of pollution sources
Resumo:
Evolution of compositions in time, space, temperature or other covariates is frequent in practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of the sample, thus producing a transfer of mass from some components to other ones, but preserving the total mass present in the system. This evolution is traditionally modelled as a system of ordinary di erential equations of the mass of each component. However, this kind of evolution can be decomposed into a compositional change, expressed in terms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despite of some subcompositions behaving linearly. The goal is to study the characteristics of such simplicial systems of di erential equa- tions such as linearity and stability. This is performed extracting the compositional dif ferential equations from the mass equations. Then, simplicial derivatives are expressed in coordinates of the simplex, thus reducing the problem to the standard theory of systems of di erential equations, including stability. The characterisation of stability of these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and the associated behaviour of the orbits are the main tools. For a three component system, these orbits can be plotted both in coordinates of the simplex or in a ternary diagram. A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is a radioactive decay
Resumo:
These notes have been prepared as support to a short course on compositional data analysis. Their aim is to transmit the basic concepts and skills for simple applications, thus setting the premises for more advanced projects
Resumo:
We take stock of the present position of compositional data analysis, of what has been achieved in the last 20 years, and then make suggestions as to what may be sensible avenues of future research. We take an uncompromisingly applied mathematical view, that the challenge of solving practical problems should motivate our theoretical research; and that any new theory should be thoroughly investigated to see if it may provide answers to previously abandoned practical considerations. Indeed a main theme of this lecture will be to demonstrate this applied mathematical approach by a number of challenging examples
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature of compositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precise definition of composition. This is the aim of this oral contribution
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
Modern methods of compositional data analysis are not well known in biomedical research. Moreover, there appear to be few mathematical and statistical researchers working on compositional biomedical problems. Like the earth and environmental sciences, biomedicine has many problems in which the relevant scienti c information is encoded in the relative abundance of key species or categories. I introduce three problems in cancer research in which analysis of compositions plays an important role. The problems involve 1) the classi cation of serum proteomic pro les for early detection of lung cancer, 2) inference of the relative amounts of di erent tissue types in a diagnostic tumor biopsy, and 3) the subcellular localization of the BRCA1 protein, and it's role in breast cancer patient prognosis. For each of these problems I outline a partial solution. However, none of these problems is \solved". I attempt to identify areas in which additional statistical development is needed with the hope of encouraging more compositional data analysts to become involved in biomedical research
Resumo:
The biplot has proved to be a powerful descriptive and analytical tool in many areas of applications of statistics. For compositional data the necessary theoretical adaptation has been provided, with illustrative applications, by Aitchison (1990) and Aitchison and Greenacre (2002). These papers were restricted to the interpretation of simple compositional data sets. In many situations the problem has to be described in some form of conditional modelling. For example, in a clinical trial where interest is in how patients’ steroid metabolite compositions may change as a result of different treatment regimes, interest is in relating the compositions after treatment to the compositions before treatment and the nature of the treatments applied. To study this through a biplot technique requires the development of some form of conditional compositional biplot. This is the purpose of this paper. We choose as a motivating application an analysis of the 1992 US President ial Election, where interest may be in how the three-part composition, the percentage division among the three candidates - Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethnic composition and on the urban-rural composition of the state. The methodology of conditional compositional biplots is first developed and a detailed interpretation of the 1992 US Presidential Election provided. We use a second application involving the conditional variability of tektite mineral compositions with respect to major oxide compositions to demonstrate some hazards of simplistic interpretation of biplots. Finally we conjecture on further possible applications of conditional compositional biplots
Resumo:
The application of compositional data analysis through log ratio trans- formations corresponds to a multinomial logit model for the shares themselves. This model is characterized by the property of Independence of Irrelevant Alter- natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactly this invariance of the ratio that underlies the commonly used zero replacement procedure in compositional data analysis. In this paper we investigate using the nested logit model that does not embody IIA and an associated zero replacement procedure and compare its performance with that of the more usual approach of using the multinomial logit model. Our comparisons exploit a data set that com- bines voting data by electoral division with corresponding census data for each division for the 2001 Federal election in Australia
Resumo:
This analysis was stimulated by the real data analysis problem of household expenditure data. The full dataset contains expenditure data for a sample of 1224 households. The expenditure is broken down at 2 hierarchical levels: 9 major levels (e.g. housing, food, utilities etc.) and 92 minor levels. There are also 5 factors and 5 covariates at the household level. Not surprisingly, there are a small number of zeros at the major level, but many zeros at the minor level. The question is how best to model the zeros. Clearly, models that try to add a small amount to the zero terms are not appropriate in general as at least some of the zeros are clearly structural, e.g. alcohol/tobacco for households that are teetotal. The key question then is how to build suitable conditional models. For example, is the sub-composition of spending excluding alcohol/tobacco similar for teetotal and non-teetotal households? In other words, we are looking for sub-compositional independence. Also, what determines whether a household is teetotal? Can we assume that it is independent of the composition? In general, whether teetotal will clearly depend on the household level variables, so we need to be able to model this dependence. The other tricky question is that with zeros on more than one component, we need to be able to model dependence and independence of zeros on the different components. Lastly, while some zeros are structural, others may not be, for example, for expenditure on durables, it may be chance as to whether a particular household spends money on durables within the sample period. This would clearly be distinguishable if we had longitudinal data, but may still be distinguishable by looking at the distribution, on the assumption that random zeros will usually be for situations where any non-zero expenditure is not small. While this analysis is based on around economic data, the ideas carry over to many other situations, including geological data, where minerals may be missing for structural reasons (similar to alcohol), or missing because they occur only in random regions which may be missed in a sample (similar to the durables)
Resumo:
As stated in Aitchison (1986), a proper study of relative variation in a compositional data set should be based on logratios, and dealing with logratios excludes dealing with zeros. Nevertheless, it is clear that zero observations might be present in real data sets, either because the corresponding part is completely absent –essential zeros– or because it is below detection limit –rounded zeros. Because the second kind of zeros is usually understood as “a trace too small to measure”, it seems reasonable to replace them by a suitable small value, and this has been the traditional approach. As stated, e.g. by Tauber (1999) and by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000), the principal problem in compositional data analysis is related to rounded zeros. One should be careful to use a replacement strategy that does not seriously distort the general structure of the data. In particular, the covariance structure of the involved parts –and thus the metric properties– should be preserved, as otherwise further analysis on subpopulations could be misleading. Following this point of view, a non-parametric imputation method is introduced in Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2000). This method is analyzed in depth by Martín-Fernández, Barceló-Vidal, and Pawlowsky-Glahn (2003) where it is shown that the theoretical drawbacks of the additive zero replacement method proposed in Aitchison (1986) can be overcome using a new multiplicative approach on the non-zero parts of a composition. The new approach has reasonable properties from a compositional point of view. In particular, it is “natural” in the sense that it recovers the “true” composition if replacement values are identical to the missing values, and it is coherent with the basic operations on the simplex. This coherence implies that the covariance structure of subcompositions with no zeros is preserved. As a generalization of the multiplicative replacement, in the same paper a substitution method for missing values on compositional data sets is introduced