2 resultados para competing binding

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the optimal choice of prices and/or exams by universities in the presence of credit constraints. We first compare the optimal behavior of a public, welfare maximizing, monopoly and a private, profit maximizing, monopoly. Then we model competition between a public and a private institution and investigate the new role of exams/prices in this environment. We find that, under certain circumstances, the public university may have an interest to raise tuition fees from minimum levels if it cares for global welfare. This will be the case provided that (i) the private institution has higher quality and uses only prices to select applicants, or (ii) the private institution has lower quality and uses also exams to select students. When this is the case, there are efficiency grounds for raising public prices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced