3 resultados para categorization IT PFC computational neuroscience model HMAX
em Universitat de Girona, Spain
Resumo:
The Dirichlet family owes its privileged status within simplex distributions to easyness of interpretation and good mathematical properties. In particular, we recall fundamental properties for the analysis of compositional data such as closure under amalgamation and subcomposition. From a probabilistic point of view, it is characterised (uniquely) by a variety of independence relationships which makes it indisputably the reference model for expressing the non trivial idea of substantial independence for compositions. Indeed, its well known inadequacy as a general model for compositional data stems from such an independence structure together with the poorness of its parametrisation. In this paper a new class of distributions (called Flexible Dirichlet) capable of handling various dependence structures and containing the Dirichlet as a special case is presented. The new model exhibits a considerably richer parametrisation which, for example, allows to model the means and (part of) the variance-covariance matrix separately. Moreover, such a model preserves some good mathematical properties of the Dirichlet, i.e. closure under amalgamation and subcomposition with new parameters simply related to the parent composition parameters. Furthermore, the joint and conditional distributions of subcompositions and relative totals can be expressed as simple mixtures of two Flexible Dirichlet distributions. The basis generating the Flexible Dirichlet, though keeping compositional invariance, shows a dependence structure which allows various forms of partitional dependence to be contemplated by the model (e.g. non-neutrality, subcompositional dependence and subcompositional non-invariance), independence cases being identified by suitable parameter configurations. In particular, within this model substantial independence among subsets of components of the composition naturally occurs when the subsets have a Dirichlet distribution
Resumo:
El objetivo de esta tesis es mejorar la efectividad y eficiencia de los entornos de aprendizaje virtual. Para lograr este propósito se define un Modelo de Usuario que considera las características del usuario, el contexto y la Interacción. Estas tres dimensiones son integradas en un Modelo de Usuario Integral (MUI) para proveer adaptación de contenido, formato y actividades en entornos educativos con heterogeneidad de usuarios, tecnologías e interacciones. Esta heterogeneidad genera la entrega de contenidos, formatos y actividades inadecuadas para los estudiantes. La particularización del MUI en un entorno educativo es definida Modelo de Estudiante Integral (MEI). Las principales aportaciones de esta tesis son la definición y validación de un MUI, la utilización de un MEI abierto para propiciar la reflexión de los estudiantes sobre sus procesos de aprendizaje, la integración tecnológica con independencia de plataforma y la validación del MEI con estudiantes en escenarios reales.
Resumo:
The system described herein represents the first example of a recommender system in digital ecosystems where agents negotiate services on behalf of small companies. The small companies compete not only with price or quality, but with a wider service-by-service composition by subcontracting with other companies. The final result of these offerings depends on negotiations at the scale of millions of small companies. This scale requires new platforms for supporting digital business ecosystems, as well as related services like open-id, trust management, monitors and recommenders. This is done in the Open Negotiation Environment (ONE), which is an open-source platform that allows agents, on behalf of small companies, to negotiate and use the ecosystem services, and enables the development of new agent technologies. The methods and tools of cyber engineering are necessary to build up Open Negotiation Environments that are stable, a basic condition for predictable business and reliable business environments. Aiming to build stable digital business ecosystems by means of improved collective intelligence, we introduce a model of negotiation style dynamics from the point of view of computational ecology. This model inspires an ecosystem monitor as well as a novel negotiation style recommender. The ecosystem monitor provides hints to the negotiation style recommender to achieve greater stability of an open negotiation environment in a digital business ecosystem. The greater stability provides the small companies with higher predictability, and therefore better business results. The negotiation style recommender is implemented with a simulated annealing algorithm at a constant temperature, and its impact is shown by applying it to a real case of an open negotiation environment populated by Italian companies