2 resultados para bivariate GARCH-M
em Universitat de Girona, Spain
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
En este trabajo examinamos si la teoría de expectativas con primas de liquidez constantes puede explicar la estructura temporal de los tipos de interés de pequeños vencimientos en el mercado interbancario de depósitos español, para datos mensuales desde 1977 hasta 1995. Utilizamos el contraste de Campbell y Shiller (1987) basado en un modelo VAR cointegrado. A partir de las estimaciones consistentes de dicho modelo obtenemos la magnitud y persistencia de los shocks a través de la simulación de la respuesta al impulso, y estimaciones eficientes de los parámetros modelizando la varianza condicional que es variable en el tiempo. En este sentido, se proponen varios esquemas de volatilidad que permiten plantear distintas aproximaciones de la incertidumbre en un entorno multiecuacional GARCH y que están basadas en el modelo de expectativas propuesto. La evidencia empírica muestra que se incumple la teoría de las expectativas, que existe una dinámica conjunta a corto plazo para los tipos de interés y el diferencial que está definida por un modelo VAR(4)-GARCH( 1,1)-BEKK (que está próximo a la integrabilidad en varianza), y que existen distintos factores de riesgo que afectan a las primas en los plazos estudiados