2 resultados para biopsies

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emergent molecular measurement methods, such as DNA microarray, qRTPCR, and many others, offer tremendous promise for the personalized treatment of cancer. These technologies measure the amount of specific proteins, RNA, DNA or other molecular targets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumor specimens are heterogeneous; an individual specimen typically contains unknown amounts of multiple tissues types. Thus, the measured molecular concentrations result from an unknown mixture of tissue types, and must be normalized to account for the composition of the mixture. For example, a breast tumor biopsy may contain normal, dysplastic and cancerous epithelial cells, as well as stromal components (fatty and connective tissue) and blood and lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic and cancerous epithelial cells. The remaining tissue components serve to “contaminate” the signal of interest. The proportion of each of the tissue components changes as a function of patient characteristics (e.g., age), and varies spatially across the tumor region. Because each of the tissue components produces a different molecular signature, and the amount of each tissue type is specimen dependent, we must estimate the tissue composition of the specimen, and adjust the molecular signal for this composition. Using the idea of a chemical mass balance, we consider the total measured concentrations to be a weighted sum of the individual tissue signatures, where weights are determined by the relative amounts of the different tissue types. We develop a compositional source apportionment model to estimate the relative amounts of tissue components in a tumor specimen. We then use these estimates to infer the tissuespecific concentrations of key molecular targets for sub-typing individual tumors. We anticipate these specific measurements will greatly improve our ability to discriminate between different classes of tumors, and allow more precise matching of each patient to the appropriate treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is often associated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcifications is performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcifications have been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the sense of adding new features not only related to the shape