6 resultados para atomic diffusion
em Universitat de Girona, Spain
Resumo:
The origin of the microscopic inhomogeneities in InxGa1-xAs layers grown on GaAs by molecular beam epitaxy is analyzed through the optical absorption spectra near the band gap. It is seen that, for relaxed thick layers of about 2.8μm, composition inhomogeneities are responsible for the band edge smoothing into the whole compositional range (0.05
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
The method of extracting effective atomic orbitals and effective minimal basis sets from molecular wave function characterizing the state of an atom in a molecule is developed in the framework of the "fuzzy" atoms. In all cases studied, there were as many effective orbitals that have considerable occupation numbers as orbitals in the classical minimal basis. That is considered to be of high conceptual importance
Resumo:
Diffusion Tensor Imaging (DTI) is a new magnetic resonance imaging modality capable of producing quantitative maps of microscopic natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. This technique has become a powerful tool in the investigation of brain structure and function because it allows for in vivo measurements of white matter fiber orientation. The application of DTI in clinical practice requires specialized processing and visualization techniques to extract and represent acquired information in a comprehensible manner. Tracking techniques are used to infer patterns of continuity in the brain by following in a step-wise mode the path of a set of particles dropped into a vector field. In this way, white matter fiber maps can be obtained.