1 resultado para asymptotic inference
em Universitat de Girona, Spain
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (88)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (3)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (39)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (15)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (153)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (14)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (9)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (22)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (48)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (16)
- Universidade dos Açores - Portugal (4)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (147)
- Université de Montréal (1)
- Université de Montréal, Canada (32)
- University of Connecticut - USA (4)
- University of Michigan (9)
- University of Queensland eSpace - Australia (72)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of being compositional data and, for a given level of significance, are likely to be beyond the capabilities of laboratories to distinguish between minute concentrations and complete absence, thus preventing laboratories from reporting extremely low concentrations of the analyte. Instead, what is reported is the detection limit, which is the minimum concentration that conclusively differentiates between presence and absence of the element. A spatially distributed exhaustive sample is employed in this study to generate unbiased sub-samples, which are further censored to observe the effect that different detection limits and sample sizes have on the inference of population distributions starting from geochemical analyses having specimens below detection limit (nondetects). The isometric logratio transformation is used to convert the compositional data in the simplex to samples in real space, thus allowing the practitioner to properly borrow from the large source of statistical techniques valid only in real space. The bootstrap method is used to numerically investigate the reliability of inferring several distributional parameters employing different forms of imputation for the censored data. The case study illustrates that, in general, best results are obtained when imputations are made using the distribution best fitting the readings above detection limit and exposes the problems of other more widely used practices. When the sample is spatially correlated, it is necessary to combine the bootstrap with stochastic simulation