4 resultados para academic performance
em Universitat de Girona, Spain
Resumo:
In this article we compare regression models obtained to predict PhD students’ academic performance in the universities of Girona (Spain) and Slovenia. Explanatory variables are characteristics of PhD student’s research group understood as an egocentered social network, background and attitudinal characteristics of the PhD students and some characteristics of the supervisors. Academic performance was measured by the weighted number of publications. Two web questionnaires were designed, one for PhD students and one for their supervisors and other research group members. Most of the variables were easily comparable across universities due to the careful translation procedure and pre-tests. When direct comparison was not possible we created comparable indicators. We used a regression model in which the country was introduced as a dummy coded variable including all possible interaction effects. The optimal transformations of the main and interaction variables are discussed. Some differences between Slovenian and Girona universities emerge. Some variables like supervisor’s performance and motivation for autonomy prior to starting the PhD have the same positive effect on the PhD student’s performance in both countries. On the other hand, variables like too close supervision by the supervisor and having children have a negative influence in both countries. However, we find differences between countries when we observe the motivation for research prior to starting the PhD which increases performance in Slovenia but not in Girona. As regards network variables, frequency of supervisor advice increases performance in Slovenia and decreases it in Girona. The negative effect in Girona could be explained by the fact that additional contacts of the PhD student with his/her supervisor might indicate a higher workload in addition to or instead of a better advice about the dissertation. The number of external student’s advice relationships and social support mean contact intensity are not significant in Girona, but they have a negative effect in Slovenia. We might explain the negative effect of external advice relationships in Slovenia by saying that a lot of external advice may actually result from a lack of the more relevant internal advice
Resumo:
Aquesta tesi forma part d'un projecte destinat a predir el rendiment acadèmic dels estudiants de doctorat portat a terme per l'INSOC (International Network on Social Capital and Performance). El grup de recerca INSOC està format per les universitats de Girona (Espanya), Ljubljana (Eslovènia), Giessen (Alemanya) i Ghent (Bèlgica). El primer objectiu d'aquesta tesi és desenvolupar anàlisis quantitatius comparatius sobre el rendiment acadèmic dels estudiants de doctorat entre Espanya, Eslovènia i Alemanya a partir dels resultats individuals del rendiment acadèmic obtinguts de cada una de les universitats. La naturalesa internacional del grup de recerca implica la recerca comparativa. Vam utilitzar variables personal, actitudinals i de xarxa per predir el rendiment. El segon objectiu d'aquesta tesi és entendre de manera qualitativa perquè les variables de xarxa no ajuden quantitativament a predir el rendiment a la universitat de Girona (Espanya). En el capítol 1, definim conceptes relacionats amb el rendiment i donam un llistat de cada una de les variables independents (variables de xarxa, personals i actitudinals), resumint la lliteratura. Finalment, explicam com s'organitzen els estudis de doctorat a cada un dels diferents països. A partir d'aquestes definicions teòriques, en els pròxims capítols, primer presentarem els qüestionaris utilitzats a Espanya, Eslovènia i Alemanya per mesurar aquests diferents tipus de variables. Després, compararem les variables que són relevants per predir el rendiment dels estudiants de doctorat a cada país. Després d'això, fixarem diferents models de regressió per predir el rendiment entre països. En tots aquests models les variables de xarxa fallen a predir el rendiment a la Universitat de Girona. Finalment, utilitzem estudis qualitatius per entendre aquests resultats inesperats. En el capítol 2, expliquem com hem dissenyat i conduït els qüestionaris en els diferents països amb l'objectiu d'explicar el rendiment dels estudiants de doctorat obtinguts a Espanya, Eslovènia i Alemanya. En el capítol 3, cream indicadors comparables però apareixen problemes de comparabilitat en preguntes particulars a Espanya, Eslovènia i Alemanya. En aquest capítol expliquem com utilitzem les variables dels tres països per crear indicadors comparables. Aquest pas és molt important perquè el principal objectiu del grup de recerca INSOC és comparar el rendiment dels estudiants de doctorat entre els diferents països. En el capítol 4 comparem models de regressió obtinguts de predir el rendiment dels estudiants de doctorat a les universitats de Girona (Espanya) i Eslovènia. Les variables són característiques dels grups de recerca dels estudiants de doctorat enteses com una xarxa social egocèntrica, característiques personals i actitudinals dels estudiants de doctorat i algunes carecterístiques dels directors. Vam trobar que les variables de xarxa egocèntriques no predien el rendiment a la Universitat de Girona. En el capítol 5, comparem dades eslovenes, espanyoles i alemnayes, seguint la metodologia del capítol 4. Concluïm que el cas alemany és molt diferent. El poder predictiu de les variables de xarxa no millora. En el capítol 6 el grup de recerca dels estudiants de doctorat és entès com una xarxa duocèntrica (Coromina et al., 2008), amb l'objectiu d'obtendre informació de la relació mútua entre els estudiants i els seus directors i els contactes d'ambdós amb els altres de la xarxa. La inclusió de la xarxa duocèntrica no millora el poder predictiu del model de regressió utilitzant les variales egocèntriques de xarxa. El capítol 7 pretèn entendre perquè les variables de xarxa no predeixen el rendiment a la Universitat de Girona. Utilitzem el mètode mixte, esperant que l'estudi qualitatiu pugui cobrir les raons de perquè la qualitat de la xarxa falla en la qualitat del treball dels estudiants. Per recollir dades per l'estudi qualitatiu utilitzem entrevistes en profunditat.
Resumo:
El objetivo de esta tesis es predecir el rendimiento de los estudiantes de doctorado en la Universidad de Girona según características personales (background), actitudinales y de redes sociales de los estudiantes. La población estudiada son estudiantes de tercer y cuarto curso de doctorado y sus directores de tesis doctoral. Para obtener los datos se ha diseño un cuestionario web especificando sus ventajas y teniendo en cuenta algunos problemas tradicionales de no cobertura o no respuesta. El cuestionario web se hizo debido a la complejidad que comportan de las preguntas de red social. El cuestionario electrónico permite, mediante una serie de instrucciones, reducir el tiempo para responder y hacerlo menos cargado. Este cuestionario web, además es auto administrado, lo cual nos permite, según la literatura, unas respuestas mas honestas que cuestionario con encuestador. Se analiza la calidad de las preguntas de red social en cuestionario web para datos egocéntricos. Para eso se calcula la fiabilidad y la validez de este tipo de preguntas, por primera vez a través del modelo Multirasgo Multimétodo (Multitrait Multimethod). Al ser datos egocéntricos, se pueden considerar jerárquicos, y por primera vez se una un modelo Multirasgo Multimétodo Multinivel (multilevel Multitrait Multimethod). Las la fiabilidad y validez se pueden obtener a nivel individual (within group component) o a nivel de grupo (between group component) y se usan para llevar a cabo un meta-análisis con otras universidades europeas para analizar ciertas características de diseño del cuestionario. Estas características analizan si para preguntas de red social hechas en cuestionarios web son más fiables y validas hechas "by questions" o "by alters", si son presentes todas las etiquetas de frecuencia para los ítems o solo la del inicio y final, o si es mejor que el diseño del cuestionario esté en con color o blanco y negro. También se analiza la calidad de la red social en conjunto, en este caso específico son los grupos de investigación de la universidad. Se tratan los problemas de los datos ausentes en las redes completas. Se propone una nueva alternativa a la solución típica de la red egocéntrica o los respondientes proxies. Esta nueva alternativa la hemos nombrado "Nosduocentered Network" (red Nosduocentrada), se basa en dos actores centrales en una red. Estimando modelos de regresión, esta "Nosduocentered network" tiene mas poder predictivo para el rendimiento de los estudiantes de doctorado que la red egocéntrica. Además se corrigen las correlaciones de las variables actitudinales por atenuación debido al pequeño tamaño muestral. Finalmente, se hacen regresiones de los tres tipos de variables (background, actitudinales y de red social) y luego se combinan para analizar cual para predice mejor el rendimiento (según publicaciones académicas) de los estudiantes de doctorado. Los resultados nos llevan a predecir el rendimiento académico de los estudiantes de doctorado depende de variables personales (background) i actitudinales. Asimismo, se comparan los resultados obtenidos con otros estudios publicados.
Resumo:
The article examines the structure of the collaboration networks of research groups where Slovenian and Spanish PhD students are pursuing their doctorate. The units of analysis are student-supervisor dyads. We use duocentred networks, a novel network structure appropriate for networks which are centred around a dyad. A cluster analysis reveals three typical clusters of research groups. Those which are large and belong to several institutions are labelled under a bridging social capital label. Those which are small, centred in a single institution but have high cohesion are labelled as bonding social capital. Those which are small and with low cohesion are called weak social capital groups. Academic performance of both PhD students and supervisors are highest in bridging groups and lowest in weak groups. Other variables are also found to differ according to the type of research group. At the end, some recommendations regarding academic and research policy are drawn