4 resultados para Voltage swell
em Universitat de Girona, Spain
Resumo:
This paper presents and compares two approaches to estimate the origin (upstream or downstream) of voltage sag registered in distribution substations. The first approach is based on the application of a single rule dealing with features extracted from the impedances during the fault whereas the second method exploit the variability of waveforms from an statistical point of view. Both approaches have been tested with voltage sags registered in distribution substations and advantages, drawbacks and comparative results are presented
Resumo:
This paper aims to survey the techniques and methods described in literature to analyse and characterise voltage sags and the corresponding objectives of these works. The study has been performed from a data mining point of view
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
This thesis proposes a framework for identifying the root-cause of a voltage disturbance, as well as, its source location (upstream/downstream) from the monitoring place. The framework works with three-phase voltage and current waveforms collected in radial distribution networks without distributed generation. Real-world and synthetic waveforms are used to test it. The framework involves features that are conceived based on electrical principles, and assuming some hypothesis on the analyzed phenomena. Features considered are based on waveforms and timestamp information. Multivariate analysis of variance and rule induction algorithms are applied to assess the amount of meaningful information explained by each feature, according to the root-cause of the disturbance and its source location. The obtained classification rates show that the proposed framework could be used for automatic diagnosis of voltage disturbances collected in radial distribution networks. Furthermore, the diagnostic results can be subsequently used for supporting power network operation, maintenance and planning.