3 resultados para Turkish language--Composition and exercises
em Universitat de Girona, Spain
Resumo:
It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to the composition of the planets crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind, while Na and K originate from volatilized materials partitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. We will discuss these processes but focus more on the expected surface composition and solar wind particle sputtering which releases material like Ca and other elements from the surface minerals and discuss the relevance of composition modelling
Resumo:
Study on the composition and distribution of Phytobenthic Assemblages of Addaia Bay (Menorca, Western Mediterranean)
Resumo:
Pollution by toxic compounds is one of the most relevant environmental damages to ecosystems produced by human activity and, therefore, it must be considered in environmental protection and restoration of contaminated sites. According to this purposes, the main goal of this doctoral thesis has been to analyse the impact of several chlorophenols and heavy metals on the microbial communities of two typical Mediterranean soils. The ecological risk concentrations of each pollutant, which have been determined according to respirometric activity and changes in the microbial community composition, and the factors that influence on their effective toxic concentrations (bioavailable pollutants) have been analysed in order to predict their potential impact on different soil ecosystems and provide scientific data for the regulation of the soil protection policies. Moreover, resistant microorganisms with pollutant removal capacities have been isolated from artificially contaminated soil microcosms and tested in axenic cultures, to infer their potential usefulness for bioremediation.