5 resultados para Transfer matrix method

em Universitat de Girona, Spain


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31 G* and extended 6-31++ G* basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of compositions in time, space, temperature or other covariates is frequent in practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of the sample, thus producing a transfer of mass from some components to other ones, but preserving the total mass present in the system. This evolution is traditionally modelled as a system of ordinary di erential equations of the mass of each component. However, this kind of evolution can be decomposed into a compositional change, expressed in terms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despite of some subcompositions behaving linearly. The goal is to study the characteristics of such simplicial systems of di erential equa- tions such as linearity and stability. This is performed extracting the compositional dif ferential equations from the mass equations. Then, simplicial derivatives are expressed in coordinates of the simplex, thus reducing the problem to the standard theory of systems of di erential equations, including stability. The characterisation of stability of these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and the associated behaviour of the orbits are the main tools. For a three component system, these orbits can be plotted both in coordinates of the simplex or in a ternary diagram. A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is a radioactive decay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines