10 resultados para Time Use
em Universitat de Girona, Spain
Resumo:
In 2000 the European Statistical Office published the guidelines for developing the Harmonized European Time Use Surveys system. Under such a unified framework, the first Time Use Survey of national scope was conducted in Spain during 2002– 03. The aim of these surveys is to understand human behavior and the lifestyle of people. Time allocation data are of compositional nature in origin, that is, they are subject to non-negativity and constant-sum constraints. Thus, standard multivariate techniques cannot be directly applied to analyze them. The goal of this work is to identify homogeneous Spanish Autonomous Communities with regard to the typical activity pattern of their respective populations. To this end, fuzzy clustering approach is followed. Rather than the hard partitioning of classical clustering, where objects are allocated to only a single group, fuzzy method identify overlapping groups of objects by allowing them to belong to more than one group. Concretely, the probabilistic fuzzy c-means algorithm is conveniently adapted to deal with the Spanish Time Use Survey microdata. As a result, a map distinguishing Autonomous Communities with similar activity pattern is drawn. Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
Compositional data, also called multiplicative ipsative data, are common in survey research instruments in areas such as time use, budget expenditure and social networks. Compositional data are usually expressed as proportions of a total, whose sum can only be 1. Owing to their constrained nature, statistical analysis in general, and estimation of measurement quality with a confirmatory factor analysis model for multitrait-multimethod (MTMM) designs in particular are challenging tasks. Compositional data are highly non-normal, as they range within the 0-1 interval. One component can only increase if some other(s) decrease, which results in spurious negative correlations among components which cannot be accounted for by the MTMM model parameters. In this article we show how researchers can use the correlated uniqueness model for MTMM designs in order to evaluate measurement quality of compositional indicators. We suggest using the additive log ratio transformation of the data, discuss several approaches to deal with zero components and explain how the interpretation of MTMM designs di ers from the application to standard unconstrained data. We show an illustration of the method on data of social network composition expressed in percentages of partner, family, friends and other members in which we conclude that the faceto-face collection mode is generally superior to the telephone mode, although primacy e ects are higher in the face-to-face mode. Compositions of strong ties (such as partner) are measured with higher quality than those of weaker ties (such as other network members)
Resumo:
Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants
Resumo:
A compositional time series is obtained when a compositional data vector is observed at different points in time. Inherently, then, a compositional time series is a multivariate time series with important constraints on the variables observed at any instance in time. Although this type of data frequently occurs in situations of real practical interest, a trawl through the statistical literature reveals that research in the field is very much in its infancy and that many theoretical and empirical issues still remain to be addressed. Any appropriate statistical methodology for the analysis of compositional time series must take into account the constraints which are not allowed for by the usual statistical techniques available for analysing multivariate time series. One general approach to analyzing compositional time series consists in the application of an initial transform to break the positive and unit sum constraints, followed by the analysis of the transformed time series using multivariate ARIMA models. In this paper we discuss the use of the additive log-ratio, centred log-ratio and isometric log-ratio transforms. We also present results from an empirical study designed to explore how the selection of the initial transform affects subsequent multivariate ARIMA modelling as well as the quality of the forecasts
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper focuses on one of the methods for bandwidth allocation in an ATM network: the convolution approach. The convolution approach permits an accurate study of the system load in statistical terms by accumulated calculations, since probabilistic results of the bandwidth allocation can be obtained. Nevertheless, the convolution approach has a high cost in terms of calculation and storage requirements. This aspect makes real-time calculations difficult, so many authors do not consider this approach. With the aim of reducing the cost we propose to use the multinomial distribution function: the enhanced convolution approach (ECA). This permits direct computation of the associated probabilities of the instantaneous bandwidth requirements and makes a simple deconvolution process possible. The ECA is used in connection acceptance control, and some results are presented
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
In this thesis I propose a novel method to estimate the dose and injection-to-meal time for low-risk intensive insulin therapy. This dosage-aid system uses an optimization algorithm to determine the insulin dose and injection-to-meal time that minimizes the risk of postprandial hyper- and hypoglycaemia in type 1 diabetic patients. To this end, the algorithm applies a methodology that quantifies the risk of experiencing different grades of hypo- or hyperglycaemia in the postprandial state induced by insulin therapy according to an individual patient’s parameters. This methodology is based on modal interval analysis (MIA). Applying MIA, the postprandial glucose level is predicted with consideration of intra-patient variability and other sources of uncertainty. A worst-case approach is then used to calculate the risk index. In this way, a safer prediction of possible hyper- and hypoglycaemic episodes induced by the insulin therapy tested can be calculated in terms of these uncertainties.
Resumo:
El foc bacterià és una malaltia que afecta a plantes de la família de la rosàcies, causada pel bacteri Erwinia amylovora. El seu rang d'hostes inclou arbres fruiters, com la perera, la pomera o el codonyer, i plantes ornamentals de gran interès comercial i econòmic. Actualment, la malaltia s'ha dispersat i es troba àmpliament distribuïda en totes les zones de clima temperat del món. A Espanya, on la malaltia no és endèmica, el foc bacterià es va detectar per primer cop al 1995 al nord del país (Euskadi) i posteriorment, han aparegut varis focus en altres localitzacions, que han estat convenientment eradicats. El control del foc bacterià, és molt poc efectiu en plantes afectades per la malaltia, de manera que es basa en mesures encaminades a evitar la dispersió del patogen, i la introducció de la malaltia en regions no endèmiques. En aquest treball, la termoteràpia ha estat avaluada com a mètode d'eradicació d'E. amylovora de material vegetal de propagació asimptomàtic. S'ha demostrat que la termoteràpia és un mètode viable d'eradicar E. amylovora de material de propagació. Gairebé totes les espècies i varietats de rosàcies mantingudes en condicions d'humitat sobrevivien 7 hores a 45 ºC i més de 3 hores a 50 ºC, mentre que més d'1 hora d'exposició a 50 ºC amb calor seca produïa danys en el material vegetal i reduïa la brotació. Tractaments de 60 min a 45 ºC o 30 min a 50 ºC van ser suficients per reduir la població epífita d'E. amylovora a nivells no detectables (5 x 102 ufc g-1 p.f.) en branques de perera. Els derivats dels fosfonats i el benzotiadiazol són efectius en el control del foc bacterià en perera i pomera, tant en condicions de laboratori, com d'hivernacle i camp. Els inductors de defensa de les plantes redueixen els nivells de malaltia fins al 40-60%. Els intervals de temps mínims per aconseguir el millor control de la malaltia van ser 5 dies pel fosetil-Al, i 7 dies per l'etefon i el benzotiadiazol, i les dosis òptimes pel fosetil-Al i el benzotiadiazol van ser 3.72 g HPO32- L-1 i 150 mg i.a. L-1, respectivament. Es millora l'eficàcia del fosetil-Al i del benzotiadiazol en el control del foc bacterià, quan es combinen amb els antibiòtics a la meitat de la dosi d'aquests últims. Tot i que l'estratègia de barrejar productes és més pràctica i fàcil de dur a terme a camp, que l'estratègia de combinar productes, el millor nivell de control de la malaltia s'aconsegueix amb l'estratègia de combinar productes. Es va analitzar a nivell histològic i ultrastructural l'efecte del benzotiadiazol i dels fosfonats en la interacció Erwinia amylovora-perera. Ni el benzotiadiazol, ni el fosetil-Al, ni l'etefon van induir canvis estructurals en els teixits de perera 7 dies després de la seva aplicació. No obstant, després de la inoculació d'E. amylovora es va observar en plantes tractades amb fosetil-Al i etefon una desorganització estructural cel·lular, mentre que en les plantes tractades amb benzotiadiazol aquestes alteracions tissulars van ser retardades. S'han avaluat dos models (Maryblyt, Cougarblight) en un camp a Espanya afectat per la malaltia, per determinar la precisió de les prediccions. Es van utilitzar dos models per elaborar el mapa de risc, el BRS-Powell combinat i el BIS95 modificat. Els resultats van mostrar dos zones amb elevat i baix risc de la malaltia. Maryblyt i Cougarblight són dos models de fàcil ús, tot i que la seva implementació en programes de maneig de la malaltia requereix que siguin avaluats i validats per un període de temps més llarg i en àrees on la malaltia hi estigui present.
Resumo:
The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·