3 resultados para Template matching
em Universitat de Girona, Spain
Resumo:
This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels sÃmptomes més clars del cà ncer de mama, en imatges mamogrà fiques. Primerament, s'ha fet un anà lisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent parà metres: el tamany i la forma de la massa i la densitat de la mama. AixÃ, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres parà metres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anà lisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilÃstic, obtenint una sèrie de regions sospitoses. Fent servir l'anà lisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un parà metre que s'introdueix de forma natural dins l'algorisme.