3 resultados para Strichartz Estimate
em Universitat de Girona, Spain
Resumo:
The statistical analysis of literary style is the part of stylometry that compares measurable characteristics in a text that are rarely controlled by the author, with those in other texts. When the goal is to settle authorship questions, these characteristics should relate to the author’s style and not to the genre, epoch or editor, and they should be such that their variation between authors is larger than the variation within comparable texts from the same author. For an overview of the literature on stylometry and some of the techniques involved, see for example Mosteller and Wallace (1964, 82), Herdan (1964), Morton (1978), Holmes (1985), Oakes (1998) or Lebart, Salem and Berry (1998). Tirant lo Blanc, a chivalry book, is the main work in catalan literature and it was hailed to be “the best book of its kind in the world” by Cervantes in Don Quixote. Considered by writters like Vargas Llosa or Damaso Alonso to be the first modern novel in Europe, it has been translated several times into Spanish, Italian and French, with modern English translations by Rosenthal (1996) and La Fontaine (1993). The main body of this book was written between 1460 and 1465, but it was not printed until 1490. There is an intense and long lasting debate around its authorship sprouting from its first edition, where its introduction states that the whole book is the work of Martorell (1413?-1468), while at the end it is stated that the last one fourth of the book is by Galba (?-1490), after the death of Martorell. Some of the authors that support the theory of single authorship are Riquer (1990), Chiner (1993) and Badia (1993), while some of those supporting the double authorship are Riquer (1947), Coromines (1956) and Ferrando (1995). For an overview of this debate, see Riquer (1990). Neither of the two candidate authors left any text comparable to the one under study, and therefore discriminant analysis can not be used to help classify chapters by author. By using sample texts encompassing about ten percent of the book, and looking at word length and at the use of 44 conjunctions, prepositions and articles, Ginebra and Cabos (1998) detect heterogeneities that might indicate the existence of two authors. By analyzing the diversity of the vocabulary, Riba and Ginebra (2000) estimates that stylistic boundary to be near chapter 383. Following the lead of the extensive literature, this paper looks into word length, the use of the most frequent words and into the use of vowels in each chapter of the book. Given that the features selected are categorical, that leads to three contingency tables of ordered rows and therefore to three sequences of multinomial observations. Section 2 explores these sequences graphically, observing a clear shift in their distribution. Section 3 describes the problem of the estimation of a suden change-point in those sequences, in the following sections we propose various ways to estimate change-points in multinomial sequences; the method in section 4 involves fitting models for polytomous data, the one in Section 5 fits gamma models onto the sequence of Chi-square distances between each row profiles and the average profile, the one in Section 6 fits models onto the sequence of values taken by the first component of the correspondence analysis as well as onto sequences of other summary measures like the average word length. In Section 7 we fit models onto the marginal binomial sequences to identify the features that distinguish the chapters before and after that boundary. Most methods rely heavily on the use of generalized linear models
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.