10 resultados para Stochastically constrained problems
em Universitat de Girona, Spain
Resumo:
Aquesta tesi estudia com estimar la distribució de les variables regionalitzades l'espai mostral i l'escala de les quals admeten una estructura d'espai Euclidià. Apliquem el principi del treball en coordenades: triem una base ortonormal, fem estadística sobre les coordenades de les dades, i apliquem els output a la base per tal de recuperar un resultat en el mateix espai original. Aplicant-ho a les variables regionalitzades, obtenim una aproximació única consistent, que generalitza les conegudes propietats de les tècniques de kriging a diversos espais mostrals: dades reals, positives o composicionals (vectors de components positives amb suma constant) són tractades com casos particulars. D'aquesta manera, es generalitza la geostadística lineal, i s'ofereix solucions a coneguts problemes de la no-lineal, tot adaptant la mesura i els criteris de representativitat (i.e., mitjanes) a les dades tractades. L'estimador per a dades positives coincideix amb una mitjana geomètrica ponderada, equivalent a l'estimació de la mediana, sense cap dels problemes del clàssic kriging lognormal. El cas composicional ofereix solucions equivalents, però a més permet estimar vectors de probabilitat multinomial. Amb una aproximació bayesiana preliminar, el kriging de composicions esdevé també una alternativa consistent al kriging indicador. Aquesta tècnica s'empra per estimar funcions de probabilitat de variables qualsevol, malgrat que sovint ofereix estimacions negatives, cosa que s'evita amb l'alternativa proposada. La utilitat d'aquest conjunt de tècniques es comprova estudiant la contaminació per amoníac a una estació de control automàtic de la qualitat de l'aigua de la conca de la Tordera, i es conclou que només fent servir les tècniques proposades hom pot detectar en quins instants l'amoni es transforma en amoníac en una concentració superior a la legalment permesa.
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
Presentation in CODAWORK'03, session 4: Applications to archeometry
Resumo:
A major obstacle to processing images of the ocean floor comes from the absorption and scattering effects of the light in the aquatic environment. Due to the absorption of the natural light, underwater vehicles often require artificial light sources attached to them to provide the adequate illumination. Unfortunately, these flashlights tend to illuminate the scene in a nonuniform fashion, and, as the vehicle moves, induce shadows in the scene. For this reason, the first step towards application of standard computer vision techniques to underwater imaging requires dealing first with these lighting problems. This paper analyses and compares existing methodologies to deal with low-contrast, nonuniform illumination in underwater image sequences. The reviewed techniques include: (i) study of the illumination-reflectance model, (ii) local histogram equalization, (iii) homomorphic filtering, and, (iv) subtraction of the illumination field. Several experiments on real data have been conducted to compare the different approaches
Resumo:
In the last few years, many researchers have studied the presence of common dimensions of temperament in subjects with symptoms of anxiety. The aim of this study is to examine the association between temperamental dimensions (high negative affect and activity level) and anxiety problems in clinical preschool children. A total of 38 children, ages 3 to 6 years, from the Infant and Adolescent Mental Health Center of Girona and the Center of Diagnosis and Early Attention of Sabadell and Olot were evaluated by parents and psychologists. Their parents completed several screening scales and, subsequently, clinical child psychopathology professionals carried out diagnostic interviews with children from the sample who presented signs of anxiety. Findings showed that children with high levels of negative affect and low activity level have pronounced symptoms of anxiety. However, children with anxiety disorders do not present different temperament styles from their peers without these pathologies
Resumo:
La coordinació i assignació de tasques en entorns distribuïts ha estat un punt important de la recerca en els últims anys i aquests temes són el cor dels sistemes multi-agent. Els agents en aquests sistemes necessiten cooperar i considerar els altres agents en les seves accions i decisions. A més a més, els agents han de coordinar-se ells mateixos per complir tasques complexes que necessiten més d'un agent per ser complerta. Aquestes tasques poden ser tan complexes que els agents poden no saber la ubicació de les tasques o el temps que resta abans de que les tasques quedin obsoletes. Els agents poden necessitar utilitzar la comunicació amb l'objectiu de conèixer la tasca en l'entorn, en cas contrari, poden perdre molt de temps per trobar la tasca dins de l'escenari. De forma similar, el procés de presa de decisions distribuït pot ser encara més complexa si l'entorn és dinàmic, amb incertesa i en temps real. En aquesta dissertació, considerem entorns amb sistemes multi-agent amb restriccions i cooperatius (dinàmics, amb incertesa i en temps real). En aquest sentit es proposen dues aproximacions que permeten la coordinació dels agents. La primera és un mecanisme semi-centralitzat basat en tècniques de subhastes combinatòries i la idea principal es minimitzar el cost de les tasques assignades des de l'agent central cap als equips d'agents. Aquest algoritme té en compte les preferències dels agents sobre les tasques. Aquestes preferències estan incloses en el bid enviat per l'agent. La segona és un aproximació d'scheduling totalment descentralitzat. Això permet als agents assignar les seves tasques tenint en compte les preferències temporals sobre les tasques dels agents. En aquest cas, el rendiment del sistema no només depèn de la maximització o del criteri d'optimització, sinó que també depèn de la capacitat dels agents per adaptar les seves assignacions eficientment. Addicionalment, en un entorn dinàmic, els errors d'execució poden succeir a qualsevol pla degut a la incertesa i error de accions individuals. A més, una part indispensable d'un sistema de planificació és la capacitat de re-planificar. Aquesta dissertació també proveeix una aproximació amb re-planificació amb l'objectiu de permetre als agent re-coordinar els seus plans quan els problemes en l'entorn no permeti la execució del pla. Totes aquestes aproximacions s'han portat a terme per permetre als agents assignar i coordinar de forma eficient totes les tasques complexes en un entorn multi-agent cooperatiu, dinàmic i amb incertesa. Totes aquestes aproximacions han demostrat la seva eficiència en experiments duts a terme en l'entorn de simulació RoboCup Rescue.
Resumo:
En problemes d'assignació de recursos, normalment s'han de tenir en compte les incerteses que poden provocar canvis en les dades inicials. Aquests canvis dificulten l'aplicabilitat de les planificacions que s'hagin fet inicialment. Aquesta tesi se centra en l'elaboració de tècniques que consideren la incertesa alhora de cercar solucions robustes, és a dir solucions que puguin continuar essent vàlides encara que hi hagi canvis en l'entorn. Particularment, introduïm el concepte de robustesa basat en reparabilitat, on una solució robusta és una que pot ser reparada fàcilment en cas que hi hagi incidències. La nostra aproximació es basa en lògica proposicional, codificant el problema en una fórmula de satisfactibilitat Booleana, i aplicant tècniques de reformulació per a la generació de solucions robustes. També presentem un mecanisme per a incorporar flexibilitat a les solucions robustes, de manera que es pugui establir fàcilment el grau desitjat entre robustesa i optimalitat de les solucions.
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
The activated sludge and anaerobic digestion processes have been modelled in widely accepted models. Nevertheless, these models still have limitations when describing operational problems of microbiological origin. The aim of this thesis is to develop a knowledge-based model to simulate risk of plant-wide operational problems of microbiological origin.For the risk model heuristic knowledge from experts and literature was implemented in a rule-based system. Using fuzzy logic, the system can infer a risk index for the main operational problems of microbiological origin (i.e. filamentous bulking, biological foaming, rising sludge and deflocculation). To show the results of the risk model, it was implemented in the Benchmark Simulation Models. This allowed to study the risk model's response in different scenarios and control strategies. The risk model has shown to be really useful providing a third criterion to evaluate control strategies apart from the economical and environmental criteria.