2 resultados para Speaker Recognition, Text-constrained, Multilingual, Speaker Verification, HMMs

em Universitat de Girona, Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquesta tesi estudia com estimar la distribució de les variables regionalitzades l'espai mostral i l'escala de les quals admeten una estructura d'espai Euclidià. Apliquem el principi del treball en coordenades: triem una base ortonormal, fem estadística sobre les coordenades de les dades, i apliquem els output a la base per tal de recuperar un resultat en el mateix espai original. Aplicant-ho a les variables regionalitzades, obtenim una aproximació única consistent, que generalitza les conegudes propietats de les tècniques de kriging a diversos espais mostrals: dades reals, positives o composicionals (vectors de components positives amb suma constant) són tractades com casos particulars. D'aquesta manera, es generalitza la geostadística lineal, i s'ofereix solucions a coneguts problemes de la no-lineal, tot adaptant la mesura i els criteris de representativitat (i.e., mitjanes) a les dades tractades. L'estimador per a dades positives coincideix amb una mitjana geomètrica ponderada, equivalent a l'estimació de la mediana, sense cap dels problemes del clàssic kriging lognormal. El cas composicional ofereix solucions equivalents, però a més permet estimar vectors de probabilitat multinomial. Amb una aproximació bayesiana preliminar, el kriging de composicions esdevé també una alternativa consistent al kriging indicador. Aquesta tècnica s'empra per estimar funcions de probabilitat de variables qualsevol, malgrat que sovint ofereix estimacions negatives, cosa que s'evita amb l'alternativa proposada. La utilitat d'aquest conjunt de tècniques es comprova estudiant la contaminació per amoníac a una estació de control automàtic de la qualitat de l'aigua de la conca de la Tordera, i es conclou que només fent servir les tècniques proposades hom pot detectar en quins instants l'amoni es transforma en amoníac en una concentració superior a la legalment permesa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La visió és probablement el nostre sentit més dominant a partir del qual derivem la majoria d'informació del món que ens envolta. A través de la visió podem percebre com són les coses, on són i com es mouen. En les imatges que percebem amb el nostre sistema de visió podem extreure'n característiques com el color, la textura i la forma, i gràcies a aquesta informació som capaços de reconèixer objectes fins i tot quan s'observen sota unes condicions totalment diferents. Per exemple, som capaços de distingir un mateix objecte si l'observem des de diferents punts de vista, distància, condicions d'il·luminació, etc. La Visió per Computador intenta emular el sistema de visió humà mitjançant un sistema de captura d'imatges, un ordinador, i un conjunt de programes. L'objectiu desitjat no és altre que desenvolupar un sistema que pugui entendre una imatge d'una manera similar com ho realitzaria una persona. Aquesta tesi es centra en l'anàlisi de la textura per tal de realitzar el reconeixement de superfícies. La motivació principal és resoldre el problema de la classificació de superfícies texturades quan han estat capturades sota diferents condicions, com ara distància de la càmera o direcció de la il·luminació. D'aquesta forma s'aconsegueix reduir els errors de classificació provocats per aquests canvis en les condicions de captura. En aquest treball es presenta detalladament un sistema de reconeixement de textures que ens permet classificar imatges de diferents superfícies capturades en diferents condicions. El sistema proposat es basa en un model 3D de la superfície (que inclou informació de color i forma) obtingut mitjançant la tècnica coneguda com a 4-Source Colour Photometric Stereo (CPS). Aquesta informació és utilitzada posteriorment per un mètode de predicció de textures amb l'objectiu de generar noves imatges 2D de les textures sota unes noves condicions. Aquestes imatges virtuals que es generen seran la base del nostre sistema de reconeixement, ja que seran utilitzades com a models de referència per al nostre classificador de textures. El sistema de reconeixement proposat combina les Matrius de Co-ocurrència per a l'extracció de característiques de textura, amb la utilització del Classificador del veí més proper. Aquest classificador ens permet al mateix temps aproximar la direcció d'il·luminació present en les imatges que s'utilitzen per testejar el sistema de reconeixement. És a dir, serem capaços de predir l'angle d'il·luminació sota el qual han estat capturades les imatges de test. Els resultats obtinguts en els diferents experiments que s'han realitzat demostren la viabilitat del sistema de predicció de textures, així com del sistema de reconeixement.