2 resultados para Second harmonic generation (SHG)

em Universitat de Girona, Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restricted Hartree-Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers - polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical property derivative expressions are presented for the nuclear relaxation contribution to static and dynamic (infinite frequency approximation) nonlinear optical properties. For CF4 and SF6, as opposed to HF and CH4, a term that is quadratic in the vibrational anharmonicity (and not previously evaluated for any molecule) makes an important contribution to the static second vibrational hyperpolarizability of CF4 and SF6. A comparison between calculated and experimental values for the difference between the (anisotropic) Kerr effect and electric field induced second-harmonic generation shows that, at the Hartree-Fock level, the nuclear relaxation/infinite frequency approximation gives the correct trend (in the series CH4, CF4, SF6) but is of the order of 50% too small