7 resultados para Schumacher, Gerald
em Universitat de Girona, Spain
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
We propose to analyze shapes as “compositions” of distances in Aitchison geometry as an alternate and complementary tool to classical shape analysis, especially when size is non-informative. Shapes are typically described by the location of user-chosen landmarks. However the shape – considered as invariant under scaling, translation, mirroring and rotation – does not uniquely define the location of landmarks. A simple approach is to use distances of landmarks instead of the locations of landmarks them self. Distances are positive numbers defined up to joint scaling, a mathematical structure quite similar to compositions. The shape fixes only ratios of distances. Perturbations correspond to relative changes of the size of subshapes and of aspect ratios. The power transform increases the expression of the shape by increasing distance ratios. In analogy to the subcompositional consistency, results should not depend too much on the choice of distances, because different subsets of the pairwise distances of landmarks uniquely define the shape. Various compositional analysis tools can be applied to sets of distances directly or after minor modifications concerning the singularity of the covariance matrix and yield results with direct interpretations in terms of shape changes. The remaining problem is that not all sets of distances correspond to a valid shape. Nevertheless interpolated or predicted shapes can be backtransformated by multidimensional scaling (when all pairwise distances are used) or free geodetic adjustment (when sufficiently many distances are used)
Resumo:
”compositions” is a new R-package for the analysis of compositional and positive data. It contains four classes corresponding to the four different types of compositional and positive geometry (including the Aitchison geometry). It provides means for computation, plotting and high-level multivariate statistical analysis in all four geometries. These geometries are treated in an fully analogous way, based on the principle of working in coordinates, and the object-oriented programming paradigm of R. In this way, called functions automatically select the most appropriate type of analysis as a function of the geometry. The graphical capabilities include ternary diagrams and tetrahedrons, various compositional plots (boxplots, barplots, piecharts) and extensive graphical tools for principal components. Afterwards, ortion and proportion lines, straight lines and ellipses in all geometries can be added to plots. The package is accompanied by a hands-on-introduction, documentation for every function, demos of the graphical capabilities and plenty of usage examples. It allows direct and parallel computation in all four vector spaces and provides the beginner with a copy-and-paste style of data analysis, while letting advanced users keep the functionality and customizability they demand of R, as well as all necessary tools to add own analysis routines. A complete example is included in the appendix
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basic functionality has seen some conceptual improvement, containing now some facilities to work with and represent ilr bases built from balances, and an elaborated subsys- tem for dealing with several kinds of irregular data: (rounded or structural) zeroes, incomplete observations and outliers. The general approach to these irregularities is based on subcompositions: for an irregular datum, one can distinguish a “regular” sub- composition (where all parts are actually observed and the datum behaves typically) and a “problematic” subcomposition (with those unobserved, zero or rounded parts, or else where the datum shows an erratic or atypical behaviour). Systematic classification schemes are proposed for both outliers and missing values (including zeros) focusing on the nature of irregularities in the datum subcomposition(s). To compute statistics with values missing at random and structural zeros, a projection approach is implemented: a given datum contributes to the estimation of the desired parameters only on the subcompositon where it was observed. For data sets with values below the detection limit, two different approaches are provided: the well-known imputation technique, and also the projection approach. To compute statistics in the presence of outliers, robust statistics are adapted to the characteristics of compositional data, based on the minimum covariance determinant approach. The outlier classification is based on four different models of outlier occur- rence and Monte-Carlo-based tests for their characterization. Furthermore the package provides special plots helping to understand the nature of outliers in the dataset. Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator, robustness, rounded zeros
Resumo:
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence of a composition with a categorical variable, a colored set of ternary diagrams might be a good idea for a first look at the data, but it will fast hide important aspects if the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the conventional, black-box ilr is used. Thinking on terms of the Euclidean structure of the simplex, we suggest to set up appropriate projections, which on one side show the compositional geometry and on the other side are still comprehensible by a non-expert analyst, readable for all locations and scales of the data. This is e.g. done by defining special balance displays with carefully- selected axes. Following this idea, we need to systematically ask how to display, explore, describe, and test the relation to complementary or explanatory data of categorical, real, ratio or again compositional scales. This contribution shows that it is sufficient to use some basic concepts and very few advanced tools from multivariate statistics (principal covariances, multivariate linear models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate analysis
Resumo:
The preceding two editions of CoDaWork included talks on the possible consideration of densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended the Euclidean structure of the simplex to a Hilbert space structure of the set of densities within a bounded interval, and van den Boogaart (2005) generalized this to the set of densities bounded by an arbitrary reference density. From the many variations of the Hilbert structures available, we work with three cases. For bounded variables, a basis derived from Legendre polynomials is used. For variables with a lower bound, we standardize them with respect to an exponential distribution and express their densities as coordinates in a basis derived from Laguerre polynomials. Finally, for unbounded variables, a normal distribution is used as reference, and coordinates are obtained with respect to a Hermite-polynomials-based basis. To get the coordinates, several approaches can be considered. A numerical accuracy problem occurs if one estimates the coordinates directly by using discretized scalar products. Thus we propose to use a weighted linear regression approach, where all k- order polynomials are used as predictand variables and weights are proportional to the reference density. Finally, for the case of 2-order Hermite polinomials (normal reference) and 1-order Laguerre polinomials (exponential), one can also derive the coordinates from their relationships to the classical mean and variance. Apart of these theoretical issues, this contribution focuses on the application of this theory to two main problems in sedimentary geology: the comparison of several grain size distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock or sediment, like their composition
Resumo:
L'autor s'ha basat, en part, en el que descriuen Gerald Grow i Philip Candy en el seu llibre Self-direction for lifelong learning, un llibre que si bé es va publicar fa vint anys, encara es pot considerar un referent per a molts conceptes bàsics de l'aprenentatge autogestionat. Ha integrat a les reflexions que compartireix la seva experiència com a docent per presentar certes relacions entre l'estudiant i el docent en el continu que va des de l'aprenentatge dependent fins a l'autodirigit