9 resultados para Scale BCM
em Universitat de Girona, Spain
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation
Resumo:
This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
A select-divide-and-conquer variational method to approximate configuration interaction (CI) is presented. Given an orthonormal set made up of occupied orbitals (Hartree-Fock or similar) and suitable correlation orbitals (natural or localized orbitals), a large N-electron target space S is split into subspaces S0,S1,S2,...,SR. S0, of dimension d0, contains all configurations K with attributes (energy contributions, etc.) above thresholds T0={T0egy, T0etc.}; the CI coefficients in S0 remain always free to vary. S1 accommodates KS with attributes above T1≤T0. An eigenproblem of dimension d0+d1 for S0+S 1 is solved first, after which the last d1 rows and columns are contracted into a single row and column, thus freezing the last d1 CI coefficients hereinafter. The process is repeated with successive Sj(j≥2) chosen so that corresponding CI matrices fit random access memory (RAM). Davidson's eigensolver is used R times. The final energy eigenvalue (lowest or excited one) is always above the corresponding exact eigenvalue in S. Threshold values {Tj;j=0, 1, 2,...,R} regulate accuracy; for large-dimensional S, high accuracy requires S 0+S1 to be solved outside RAM. From there on, however, usually a few Davidson iterations in RAM are needed for each step, so that Hamiltonian matrix-element evaluation becomes rate determining. One μhartree accuracy is achieved for an eigenproblem of order 24 × 106, involving 1.2 × 1012 nonzero matrix elements, and 8.4×109 Slater determinants
Resumo:
Large scale image mosaicing methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that lowcost Remotely operated vehicles (ROVs) usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predetermined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This thesis presents a set of consistent methods aimed at creating large area image mosaics from optical data obtained during surveys with low-cost underwater vehicles. First, a global alignment method developed within a Feature-based image mosaicing (FIM) framework, where nonlinear minimisation is substituted by two linear steps, is discussed. Then, a simple four-point mosaic rectifying method is proposed to reduce distortions that might occur due to lens distortions, error accumulation and the difficulties of optical imaging in an underwater medium. The topology estimation problem is addressed by means of an augmented state and extended Kalman filter combined framework, aimed at minimising the total number of matching attempts and simultaneously obtaining the best possible trajectory. Potential image pairs are predicted by taking into account the uncertainty in the trajectory. The contribution of matching an image pair is investigated using information theory principles. Lastly, a different solution to the topology estimation problem is proposed in a bundle adjustment framework. Innovative aspects include the use of fast image similarity criterion combined with a Minimum spanning tree (MST) solution, to obtain a tentative topology. This topology is improved by attempting image matching with the pairs for which there is the most overlap evidence. Unlike previous approaches for large-area mosaicing, our framework is able to deal naturally with cases where time-consecutive images cannot be matched successfully, such as completely unordered sets. Finally, the efficiency of the proposed methods is discussed and a comparison made with other state-of-the-art approaches, using a series of challenging datasets in underwater scenarios
Resumo:
The first part of this work presents an accurate analysis of the most relevant 3D registration techniques, including initial pose estimation, pairwise registration and multiview registration strategies. A new classification has been proposed, based on both the applications and the approach of the methods that have been discussed. The main contribution of this thesis is the proposal of a new 3D multiview registration strategy. The proposed approach detects revisited regions obtaining cycles of views that are used to reduce the inaccuracies that may exist in the final model due to error propagation. The method takes advantage of both global and local information of the registration process, using graph theory techniques in order correlate multiple views and minimize the propagated error by registering the views in an optimal way. The proposed method has been tested using both synthetic and real data, in order to show and study its behavior and demonstrate its reliability.
Resumo:
This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.
Resumo:
Procesos hidrodinámicos determinan, en un alto grado la calidad del agua en embalse, sin embargo dichos procesos han sido tradicionalmente olvidados en la gestión de embalse. En esta tesis se presentan evidencias de los principales procesos hidrodinámicos que ocurren en un embalse Mediterráneo a escala de cuenca a través de campañas experimentales y modelización numérica; y su influencia en la dinámica de poblaciones de fitoplancton. Dichos procesos son principalmente la generación de ondas internas o secas y la intrusión del río. La presencia de viento periódico genera secas forzadas, amplificando los modos cercanos al periodo del viento, de manera que modos verticales altos, considerados como raros en la naturaleza, tienden a dominar en el sistema.
Resumo:
En años recientes,la Inteligencia Artificial ha contribuido a resolver problemas encontrados en el desempeño de las tareas de unidades informáticas, tanto si las computadoras están distribuidas para interactuar entre ellas o en cualquier entorno (Inteligencia Artificial Distribuida). Las Tecnologías de la Información permiten la creación de soluciones novedosas para problemas específicos mediante la aplicación de los hallazgos en diversas áreas de investigación. Nuestro trabajo está dirigido a la creación de modelos de usuario mediante un enfoque multidisciplinario en los cuales se emplean los principios de la psicología, inteligencia artificial distribuida, y el aprendizaje automático para crear modelos de usuario en entornos abiertos; uno de estos es la Inteligencia Ambiental basada en Modelos de Usuario con funciones de aprendizaje incremental y distribuido (conocidos como Smart User Model). Basándonos en estos modelos de usuario, dirigimos esta investigación a la adquisición de características del usuario importantes y que determinan la escala de valores dominantes de este en aquellos temas en los cuales está más interesado, desarrollando una metodología para obtener la Escala de Valores Humanos del usuario con respecto a sus características objetivas, subjetivas y emocionales (particularmente en Sistemas de Recomendación).Una de las áreas que ha sido poco investigada es la inclusión de la escala de valores humanos en los sistemas de información. Un Sistema de Recomendación, Modelo de usuario o Sistemas de Información, solo toman en cuenta las preferencias y emociones del usuario [Velásquez, 1996, 1997; Goldspink, 2000; Conte and Paolucci, 2001; Urban and Schmidt, 2001; Dal Forno and Merlone, 2001, 2002; Berkovsky et al., 2007c]. Por lo tanto, el principal enfoque de nuestra investigación está basado en la creación de una metodología que permita la generación de una escala de valores humanos para el usuario desde el modelo de usuario. Presentamos resultados obtenidos de un estudio de casos utilizando las características objetivas, subjetivas y emocionales en las áreas de servicios bancarios y de restaurantes donde la metodología propuesta en esta investigación fue puesta a prueba.En esta tesis, las principales contribuciones son: El desarrollo de una metodología que, dado un modelo de usuario con atributos objetivos, subjetivos y emocionales, se obtenga la Escala de Valores Humanos del usuario. La metodología propuesta está basada en el uso de aplicaciones ya existentes, donde todas las conexiones entre usuarios, agentes y dominios que se caracterizan por estas particularidades y atributos; por lo tanto, no se requiere de un esfuerzo extra por parte del usuario.