3 resultados para SVM

em Universitat de Girona, Spain


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El principal objectiu d’aquest projecte és aconseguir classificar diferents vídeos d’esports segons la seva categoria. Els cercadors de text creen un vocabulari segons el significat de les diferents paraules per tal de poder identificar un document. En aquest projecte es va fer el mateix però mitjançant paraules visuals. Per exemple, es van intentar englobar com a una única paraula les diferents rodes que apareixien en els cotxes de rally. A partir de la freqüència amb què apareixien les paraules dels diferents grups dins d’una imatge vàrem crear histogrames de vocabulari que ens permetien tenir una descripció de la imatge. Per classificar un vídeo es van utilitzar els histogrames que descrivien els seus fotogrames. Com que cada histograma es podia considerar un vector de valors enters vàrem optar per utilitzar una màquina classificadora de vectors: una Support vector machine o SVM

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La calidad de energía eléctrica incluye la calidad del suministro y la calidad de la atención al cliente. La calidad del suministro a su vez se considera que la conforman dos partes, la forma de onda y la continuidad. En esta tesis se aborda la continuidad del suministro a través de la localización de faltas. Este problema se encuentra relativamente resuelto en los sistemas de transmisión, donde por las características homogéneas de la línea, la medición en ambos terminales y la disponibilidad de diversos equipos, se puede localizar el sitio de falta con una precisión relativamente alta. En sistemas de distribución, sin embargo, la localización de faltas es un problema complejo y aún no resuelto. La complejidad es debida principalmente a la presencia de conductores no homogéneos, cargas intermedias, derivaciones laterales y desbalances en el sistema y la carga. Además, normalmente, en estos sistemas sólo se cuenta con medidas en la subestación, y un modelo simplificado del circuito. Los principales esfuerzos en la localización han estado orientados al desarrollo de métodos que utilicen el fundamental de la tensión y de la corriente en la subestación, para estimar la reactancia hasta la falta. Como la obtención de la reactancia permite cuantificar la distancia al sitio de falta a partir del uso del modelo, el Método se considera Basado en el Modelo (MBM). Sin embargo, algunas de sus desventajas están asociadas a la necesidad de un buen modelo del sistema y a la posibilidad de localizar varios sitios donde puede haber ocurrido la falta, esto es, se puede presentar múltiple estimación del sitio de falta. Como aporte, en esta tesis se presenta un análisis y prueba comparativa entre varios de los MBM frecuentemente referenciados. Adicionalmente se complementa la solución con métodos que utilizan otro tipo de información, como la obtenida de las bases históricas de faltas con registros de tensión y corriente medidos en la subestación (no se limita solamente al fundamental). Como herramienta de extracción de información de estos registros, se utilizan y prueban dos técnicas de clasificación (LAMDA y SVM). Éstas relacionan las características obtenidas de la señal, con la zona bajo falta y se denominan en este documento como Métodos de Clasificación Basados en el Conocimiento (MCBC). La información que usan los MCBC se obtiene de los registros de tensión y de corriente medidos en la subestación de distribución, antes, durante y después de la falta. Los registros se procesan para obtener los siguientes descriptores: a) la magnitud de la variación de tensión ( dV ), b) la variación de la magnitud de corriente ( dI ), c) la variación de la potencia ( dS ), d) la reactancia de falta ( Xf ), e) la frecuencia del transitorio ( f ), y f) el valor propio máximo de la matriz de correlación de corrientes (Sv), cada uno de los cuales ha sido seleccionado por facilitar la localización de la falta. A partir de estos descriptores, se proponen diferentes conjuntos de entrenamiento y validación de los MCBC, y mediante una metodología que muestra la posibilidad de hallar relaciones entre estos conjuntos y las zonas en las cuales se presenta la falta, se seleccionan los de mejor comportamiento. Los resultados de aplicación, demuestran que con la combinación de los MCBC con los MBM, se puede reducir el problema de la múltiple estimación del sitio de falta. El MCBC determina la zona de falta, mientras que el MBM encuentra la distancia desde el punto de medida hasta la falta, la integración en un esquema híbrido toma las mejores características de cada método. En este documento, lo que se conoce como híbrido es la combinación de los MBM y los MCBC, de una forma complementaria. Finalmente y para comprobar los aportes de esta tesis, se propone y prueba un esquema de integración híbrida para localización de faltas en dos sistemas de distribución diferentes. Tanto los métodos que usan los parámetros del sistema y se fundamentan en la estimación de la impedancia (MBM), como aquellos que usan como información los descriptores y se fundamentan en técnicas de clasificación (MCBC), muestran su validez para resolver el problema de localización de faltas. Ambas metodologías propuestas tienen ventajas y desventajas, pero según la teoría de integración de métodos presentada, se alcanza una alta complementariedad, que permite la formulación de híbridos que mejoran los resultados, reduciendo o evitando el problema de la múltiple estimación de la falta.