2 resultados para SFM Orario Grafico Materiale Rotabile Gestione Ottimizzata Diagramma di Trazione
em Universitat de Girona, Spain
Estudi i implementació d’un mètode de reconstrucció 3D basat en SfM i registre de vistes 3D parcials
Resumo:
Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence