3 resultados para Robust Performance

em Universitat de Girona, Spain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the problem of realizing a plane-to-plane virtual link between a camera attached to the end-effector of a robot and a planar object. In order to do the system independent to the object surface appearance, a structured light emitter is linked to the camera so that 4 laser pointers are projected onto the object. In a previous paper we showed that such a system has good performance and nice characteristics like partial decoupling near the desired state and robustness against misalignment of the emitter and the camera (J. Pages et al., 2004). However, no analytical results concerning the global asymptotic stability of the system were obtained due to the high complexity of the visual features utilized. In this work we present a better set of visual features which improves the properties of the features in (J. Pages et al., 2004) and for which it is possible to prove the global asymptotic stability