5 resultados para Regression imputation

em Universitat de Girona, Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is almost not a case in exploration geology, where the studied data doesn’t includes below detection limits and/or zero values, and since most of the geological data responds to lognormal distributions, these “zero data” represent a mathematical challenge for the interpretation. We need to start by recognizing that there are zero values in geology. For example the amount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-exists with nepheline. Another common essential zero is a North azimuth, however we can always change that zero for the value of 360°. These are known as “Essential zeros”, but what can we do with “Rounded zeros” that are the result of below the detection limit of the equipment? Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimes we need to differentiate between a sodic and a potassic alteration. Pre-classification into groups requires a good knowledge of the distribution of the data and the geochemical characteristics of the groups which is not always available. Considering the zero values equal to the limit of detection of the used equipment will generate spurious distributions, especially in ternary diagrams. Same situation will occur if we replace the zero values by a small amount using non-parametric or parametric techniques (imputation). The method that we are proposing takes into consideration the well known relationships between some elements. For example, in copper porphyry deposits, there is always a good direct correlation between the copper values and the molybdenum ones, but while copper will always be above the limit of detection, many of the molybdenum values will be “rounded zeros”. So, we will take the lower quartile of the real molybdenum values and establish a regression equation with copper, and then we will estimate the “rounded” zero values of molybdenum by their corresponding copper values. The method could be applied to any type of data, provided we establish first their correlation dependency. One of the main advantages of this method is that we do not obtain a fixed value for the “rounded zeros”, but one that depends on the value of the other variable. Key words: compositional data analysis, treatment of zeros, essential zeros, rounded zeros, correlation dependency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Rijt-Plooij and Plooij’s (1992) research on emergence of regression periods in the first two years of life, the presence of such periods in a group of 18 babies (10 boys and 8 girls, aged between 3 weeks and 14 months) from a Catalonian population was analyzed. The measurements were a questionnaire filled in by the infants’ mothers, a semi-structured weekly tape-recorded interview, and observations in their homes. The procedure and the instruments used in the project follow those proposed by Rijt-Plooij and Plooij. Our results confirm the existence of the regression periods in the first year of children’s life. Inter-coder agreement for trained coders was 78.2% and within-coder agreement was 90.1 %. In the discussion, the possible meaning and relevance of regression periods in order to understand development from a psychobiological and social framework is commented upon