4 resultados para ROI reusable object and instruction
em Universitat de Girona, Spain
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
In this paper we present a novel structure from motion (SfM) approach able to infer 3D deformable models from uncalibrated stereo images. Using a stereo setup dramatically improves the 3D model estimation when the observed 3D shape is mostly deforming without undergoing strong rigid motion. Our approach first calibrates the stereo system automatically and then computes a single metric rigid structure for each frame. Afterwards, these 3D shapes are aligned to a reference view using a RANSAC method in order to compute the mean shape of the object and to select the subset of points on the object which have remained rigid throughout the sequence without deforming. The selected rigid points are then used to compute frame-wise shape registration and to extract the motion parameters robustly from frame to frame. Finally, all this information is used in a global optimization stage with bundle adjustment which allows to refine the frame-wise initial solution and also to recover the non-rigid 3D model. We show results on synthetic and real data that prove the performance of the proposed method even when there is no rigid motion in the original sequence
Resumo:
Raymond Saleilles (1855-1912) és considerat pels comparatistes com pare del dret comparat modern. De fet fou el màxim responsable de l'organització del primer congrés internacional de dret comparat a París el 1900. L'època marcada per la internacionalització dels intercanvis, la crisi del mètode jurídic francès i el repte de la codificació alemanya i suïssa motivà alguns juristes a buscar noves formes d'estudiar el dret. Saleilles defensava pel dret comparat un mètode, un objecte i un fi propis i autònoms diferents dels que fins ara tenien la dogmàtica jurídica o l'estudi de la legislació estrangera. El mètode tenia els seus fonaments en la sociologia i la història. L'objectiu del dret comparat havia de ser la construcció d'un ideal "droit commun de l'humanité civilisée". Aquest dret comú havia de ser construït no només per la doctrina sinó també per la jurisprudència i el legislador.
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal