3 resultados para RADIATION SOURCES
em Universitat de Girona, Spain
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
Atmospheric downwelling longwave radiation is an important component of the terrestrial energy budget; since it is strongly related with the greenhouse effect, it remarkably affects the climate. In this study, I evaluate the estimation of the downwelling longwave irradiance at the terrestrial surface for cloudless and overcast conditions using a one-dimensional radiative transfer model (RTM), specifically the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). The calculations performed by using this model were compared with pyrgeometer measurements at three different European places: Girona (NE of the Iberian Peninsula), Payerne (in the East of Switzerland), and Heselbach (in the Black Forest, Germany). Several studies of sensitivity based on the radiative transfer model have shown that special attention on the input of temperature and water content profiles must be held for cloudless sky conditions; for overcast conditions, similar sensitivity studies have shown that, besides the atmospheric profiles, the cloud base height is very relevant, at least for optically thick clouds. Also, the estimation of DLR in places where radiosoundings are not available is explored, either by using the atmospheric profiles spatially interpolated from the gridded analysis data provided by European Centre of Medium-Range Weather Forecast (ECMWF), or by applying a real radiosounding of a nearby site. Calculations have been compared with measurements at all sites. During cloudless sky conditions, when radiosoundings were available, calculations show differences with measurements of -2.7 ± 3.4 Wm-2 (Payerne). While no in situ radiosoundings are available, differences between modeling and measurements were about 0.3 ± 9.4 Wm-2 (Girona). During overcast sky conditions, when in situ radiosoundings and cloud properties (derived from an algorithm that uses spectral infrared and microwave ground based measurements) were available (Black Forest), calculations show differences with measurements of -0.28 ± 2.52 Wm2. When using atmospheric profiles from the ECMWF and fixed values of liquid water path and droplet effective radius (Girona) calculations show differences with measurements of 4.0 ± 2.5 Wm2. For all analyzed sky conditions, it has been confirmed that estimations from radiative transfer modeling are remarkably better than those obtained by simple parameterizations of atmospheric emissivity.
Resumo:
El treball desenvolupat en aquesta tesi presenta un profund estudi i proveïx solucions innovadores en el camp dels sistemes recomanadors. Els mètodes que usen aquests sistemes per a realitzar les recomanacions, mètodes com el Filtrat Basat en Continguts (FBC), el Filtrat Col·laboratiu (FC) i el Filtrat Basat en Coneixement (FBC), requereixen informació dels usuaris per a predir les preferències per certs productes. Aquesta informació pot ser demogràfica (Gènere, edat, adreça, etc), o avaluacions donades sobre algun producte que van comprar en el passat o informació sobre els seus interessos. Existeixen dues formes d'obtenir aquesta informació: els usuaris ofereixen explícitament aquesta informació o el sistema pot adquirir la informació implícita disponible en les transaccions o historial de recerca dels usuaris. Per exemple, el sistema recomanador de pel·lícules MovieLens (http://movielens.umn.edu/login) demana als usuaris que avaluïn almenys 15 pel·lícules dintre d'una escala de * a * * * * * (horrible, ...., ha de ser vista). El sistema genera recomanacions sobre la base d'aquestes avaluacions. Quan els usuaris no estan registrat en el sistema i aquest no té informació d'ells, alguns sistemes realitzen les recomanacions tenint en compte l'historial de navegació. Amazon.com (http://www.amazon.com) realitza les recomanacions tenint en compte les recerques que un usuari a fet o recomana el producte més venut. No obstant això, aquests sistemes pateixen de certa falta d'informació. Aquest problema és generalment resolt amb l'adquisició d'informació addicional, se li pregunta als usuaris sobre els seus interessos o es cerca aquesta informació en fonts addicionals. La solució proposada en aquesta tesi és buscar aquesta informació en diverses fonts, específicament aquelles que contenen informació implícita sobre les preferències dels usuaris. Aquestes fonts poden ser estructurades com les bases de dades amb informació de compres o poden ser no estructurades com les pàgines web on els usuaris deixen la seva opinió sobre algun producte que van comprar o posseïxen. Nosaltres trobem tres problemes fonamentals per a aconseguir aquest objectiu: 1 . La identificació de fonts amb informació idònia per als sistemes recomanadors. 2 . La definició de criteris que permetin la comparança i selecció de les fonts més idònies. 3 . La recuperació d'informació de fonts no estructurades. En aquest sentit, en la tesi proposada s'ha desenvolupat: 1 . Una metodologia que permet la identificació i selecció de les fonts més idònies. Criteris basats en les característiques de les fonts i una mesura de confiança han estat utilitzats per a resoldre el problema de la identificació i selecció de les fonts. 2 . Un mecanisme per a recuperar la informació no estructurada dels usuaris disponible en la web. Tècniques de Text Mining i ontologies s'han utilitzat per a extreure informació i estructurar-la apropiadament perquè la utilitzin els recomanadors. Les contribucions del treball desenvolupat en aquesta tesi doctoral són: 1. Definició d'un conjunt de característiques per a classificar fonts rellevants per als sistemes recomanadors 2. Desenvolupament d'una mesura de rellevància de les fonts calculada sobre la base de les característiques definides 3. Aplicació d'una mesura de confiança per a obtenir les fonts més fiables. La confiança es definida des de la perspectiva de millora de la recomanació, una font fiable és aquella que permet millorar les recomanacions. 4. Desenvolupament d'un algorisme per a seleccionar, des d'un conjunt de fonts possibles, les més rellevants i fiable utilitzant les mitjanes esmentades en els punts previs. 5. Definició d'una ontologia per a estructurar la informació sobre les preferències dels usuaris que estan disponibles en Internet. 6. Creació d'un procés de mapatge que extreu automàticament informació de les preferències dels usuaris disponibles en la web i posa aquesta informació dintre de l'ontologia. Aquestes contribucions permeten aconseguir dos objectius importants: 1 . Millorament de les recomanacions usant fonts d'informació alternatives que sigui rellevants i fiables. 2 . Obtenir informació implícita dels usuaris disponible en Internet.