7 resultados para QoS, VoIP, wireless, monitoraggio, multihoming
em Universitat de Girona, Spain
Resumo:
In order to successfully deploy multicast services in QoS-aware networks, pricing architectures must take into account the particular characteristics of multicast sessions. With this objective, we propose a charging scheme for QoS multicast services, assuming that the unicast cost of each interconnecting link is determined and that such cost is expressed in terms of quality of service (QoS) parameters. Our scheme allows determining the cost distribution of a multicast session along a cost distribution tree (CDT), and basing such distribution in those pre-existing unicast cost functions. The paper discusses in detail the main characteristics of the problem in a realistic interdomain scenario and how the proposed scheme would contribute to its solution
Resumo:
This paper presents a new charging scheme for cost distribution along a point-to-multipoint connection when destination nodes are responsible for the cost. The scheme focus on QoS considerations and a complete range of choices is presented. These choices go from a safe scheme for the network operator to a fair scheme to the customer. The in-between cases are also covered. Specific and general problems, like the incidence of users disconnecting dynamically is also discussed. The aim of this scheme is to encourage the users to disperse the resource demand instead of having a large number of direct connections to the source of the data, which would result in a higher than necessary bandwidth use from the source. This would benefit the overall performance of the network. The implementation of this task must balance between the necessity to offer a competitive service and the risk of not recovering such service cost for the network operator. Throughout this paper reference to multicast charging is made without making any reference to any specific category of service. The proposed scheme is also evaluated with the criteria set proposed in the European ATM charging project CANCAN
Resumo:
We propose a charging scheme for cost distribution along a multicast tree when cost is the responsibility of the receivers. This scheme focuses on QoS considerations and it does not depend on any specific type of service. The scheme has been designed to be used as a bridge between unicast and multicast services, solving the problem of charging multicast services by means of unicast charging and existing QoS routing mechanisms. We also include a numerical comparison and discussions of the case of non-numerical or relative QoS and on the application to some service examples in order to give a better understanding of the proposal
Resumo:
In this paper a novel methodology aimed at minimizing the probability of network failure and the failure impact (in terms of QoS degradation) while optimizing the resource consumption is introduced. A detailed study of MPLS recovery techniques and their GMPLS extensions are also presented. In this scenario, some features for reducing the failure impact and offering minimum failure probabilities at the same time are also analyzed. Novel two-step routing algorithms using this methodology are proposed. Results show that these methods offer high protection levels with optimal resource consumption
Resumo:
IP based networks still do not have the required degree of reliability required by new multimedia services, achieving such reliability will be crucial in the success or failure of the new Internet generation. Most of existing schemes for QoS routing do not take into consideration parameters concerning the quality of the protection, such as packet loss or restoration time. In this paper, we define a new paradigm to develop new protection strategies for building reliable MPLS networks, based on what we have called the network protection degree (NPD). This NPD consists of an a priori evaluation, the failure sensibility degree (FSD), which provides the failure probability and an a posteriori evaluation, the failure impact degree (FID), to determine the impact on the network in case of failure. Having mathematical formulated these components, we point out the most relevant components. Experimental results demonstrate the benefits of the utilization of the NPD, when used to enhance some current QoS routing algorithms to offer a certain degree of protection
Resumo:
A survey of MPLS protection methods and their utilization in combination with online routing methods is presented in this article. Usually, fault management methods pre-establish backup paths to recover traffic after a failure. In addition, MPLS allows the creation of different backup types, and hence MPLS is a suitable method to support traffic-engineered networks. In this article, an introduction of several label switch path backup types and their pros and cons are pointed out. The creation of an LSP involves a routing phase, which should include QoS aspects. In a similar way, to achieve a reliable network the LSP backups must also be routed by a QoS routing method. When LSP creation requests arrive one by one (a dynamic network scenario), online routing methods are applied. The relationship between MPLS fault management and QoS online routing methods is unavoidable, in particular during the creation of LSP backups. Both aspects are discussed in this article. Several ideas on how these actual technologies could be applied together are presented and compared
Resumo:
In this paper, a method for enhancing current QoS routing methods by means of QoS protection is presented. In an MPLS network, the segments (links) to be protected are predefined and an LSP request involves, apart from establishing a working path, creating a specific type of backup path (local, reverse or global). Different QoS parameters, such as network load balancing, resource optimization and minimization of LSP request rejection should be considered. QoS protection is defined as a function of QoS parameters, such as packet loss, restoration time, and resource optimization. A framework to add QoS protection to many of the current QoS routing algorithms is introduced. A backup decision module to select the most suitable protection method is formulated and different case studies are analyzed