2 resultados para Psychology, Mathematical
em Universitat de Girona, Spain
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
The main instrument used in psychological measurement is the self-report questionnaire. One of its major drawbacks however is its susceptibility to response biases. A known strategy to control these biases has been the use of so-called ipsative items. Ipsative items are items that require the respondent to make between-scale comparisons within each item. The selected option determines to which scale the weight of the answer is attributed. Consequently in questionnaires only consisting of ipsative items every respondent is allotted an equal amount, i.e. the total score, that each can distribute differently over the scales. Therefore this type of response format yields data that can be considered compositional from its inception. Methodological oriented psychologists have heavily criticized this type of item format, since the resulting data is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians have kept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate both positions and addresses the similarities and differences between the two data collection methods. The ultimate objective is to formulate a guideline when to use which type of item format. The comparison is based on data obtained with both an ipsative and normative version of three psychological questionnaires, which were administered to 502 first-year students in psychology according to a balanced within-subjects design. Previous research only compared the direct ipsative scale scores with the derived ipsative scale scores. The use of compositional data analysis techniques also enables one to compare derived normative score ratios with direct normative score ratios. The addition of the second comparison not only offers the advantage of a better-balanced research strategy. In principle it also allows for parametric testing in the evaluation